Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers simulate molecular biological clock

17.01.2005


Researchers at New York University have developed a model of the intra-cellular mammalian biological clock that reveals how rapid interaction of molecules with DNA is necessary for producing reliable 24-hour rhythms. They also found that without the inherent randomness of molecular interactions within a cell, biological rhythms may dampen over time. These findings appeared in the most recent issue of the Proceedings of the National Academy of Sciences (PNAS).



Daniel Forger, an NYU biologist and mathematician, and Charles Peskin, a professor at NYU’s Courant Institute of Mathematical Sciences and Center for Neural Science, developed a mathematical model of the biological clock that replicates the hundreds of clock-related molecular reactions that occur within each mammalian cell.

Biological circadian clocks time daily events with remarkable accuracy--often within a minute each day. However, understanding how circadian clocks function has proven challenging to researchers. This is partly because the 24-hour rhythm is an emergent property of a complex network of many molecular interactions within a cell. Another complication is that molecular interactions are inherently random, which raises the question how a clock with such imprecise components can keep time so precisely. One way to combat molecular noise is to have large numbers of molecular interactions, but this is limited by the small numbers of molecules of some molecular species within the cell (for instance, there are only two copies of DNA).


To simulate the random nature of the biochemical interactions of the mammalian intra-cellular circadian clock, Forger and Peskin used the existing Gillespie method. The method tracks the changes in the integer numbers of each type of molecule of the system as these biochemical reactions occur. Modeling each type of molecule separately helped avoid mathematical assumptions in their model that may not be valid in real-life cells. Their model was validated with a large library of data on the concentrations of the molecular species within the mouse molecular clock at different times of the day and data on the behavior of mice with circadian clock mutations.

The results of their computer simulations showed that reliable 24-hour timekeeping can only be achieved if the regulatory molecules that influence gene expression bind and unbind to DNA quickly--typically, within a minute. In this way, the large number of bindings and unbindings helps to compensate for the small numbers of molecules involved. The researchers also found that having more molecules in the cell does not necessarily lead to more accurate timekeeping. Removing all the CRY1 molecules (CRY1 mutant) or removing all the CRY2 molecules (CRY2 mutant), while keeping all other molecular species unchanged, leads to more accurate timekeeping. While simulating the PER2 mutation, they found that circadian oscillations could only be sustained in the presence of molecular noise. This may help explain some of the conflicting experimental reports about the PER2 mutant.

"Without the rapidity of molecular interactions within these cells, the precision of the biological clock would be lost," explained Forger. "It is remarkable that a process occurring on the time scale of minutes can have such a profound effect on one that occurs over 24 hours."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>