Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising study reveals how cancer-causing protein activates

14.01.2005


Researchers at Brown Medical School and Rhode Island Hospital have shed new light on the activation of a protein key to the development of cancers, particularly breast and prostate cancer, the most commonly diagnosed cancers in the United States.



The team of cell biologists has discovered a new chemical modification that activates STAT3. This so-called signaling protein is important for embryonic growth and development, helping cells grow, duplicate and migrate. In adulthood, STAT3 presumably falls dormant, but its unexpected and continuous activation causes breast and prostate cells to develop and move through the body.

Eugene Chin, M.D., a Rhode Island Hospital researcher and assistant professor (research) of surgery at Brown Medical School, said experts suspect that environmental factors, such as a diet rich in animal fat and hormones, may activate STAT3.


How the protein is turned on inside cells has been the subject of fiercely competitive research during the last decade. One known trigger is phosphorylation, which modifies some of the tyro-sine and serine amino acids that make up the STAT3 protein. Chin and his team found a second trigger: acetylation, another chemical process that modifies amino acids, such as lysine. Chin said this finding might explain why drugs that only block STAT3 phosphorylation cannot completely stop cancer cells from growing and invading other parts of the body.

"Both tyrosine phosphorylation and lysine acetylation modifications are important events for STAT3 to stimulate cancer cell growth and metastasis," Chin said. "That’s why the finding is so exciting. Now that we know more about STAT3 activation, we can create better drugs."

Their findings are published in the current issue of Science.

Paul Yuan, a post-doctoral fellow in Chin’s Rhode Island Hospital lab and the lead author of the paper, painstakingly mutated 47 lysine amino acids and tested each one in cultured cells to see if it activated STAT3. Using this method, Yuan was able to isolate the culprit: Lys685, one of as many as 780 amino acids that are strung together to make the protein.

Yuan corroborated the finding by testing both a normal and mutated version of STAT3 in a mass spectrometer. The machine smashes the protein into amino acids then sequences these building blocks. The work took nearly two years to complete.

Chin said the research provides an important target for drugs in treating breast and prostate cancers that are common in the United States. According to the American Cancer Society, an estimated 217,440 Americans were diagnosed with breast cancer and 230,110 were diagnosed with prostate cancer in 2004. "Finding a drug to block both tyrosine phosphorylation and lysine acetylation of STAT3 protein should be a more effective cancer treatment," Chin said.

The research team also included Ying-jie Guan, a post-doctoral fellow in the lab, and Devasis Chatterjee, an assistant professor (research) of Medicine at Brown Medical School.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>