Clam Embryo Study Shows Pollutant Mixture Adversely Affects Nerve Cell Development

A scientist at the Marine Biological Laboratory (MBL) has published the results of an EPA-funded clam embryo study that supports her hypothesis that, when combined, the pollutants bromoform, chloroform, and tetrachloroethylene—a chemical cocktail known as BCE—can act synergistically to alter a key regulator in nerve cell development. While scientists have previously studied the effects of these pollutants individually, this is the first time anyone has demonstrated that BCE’s components can work together to adversely affect neuron growth in a model organism.


The study, which is reported in the January 2005 issue of Environmental Toxicology and Pharmacology, is the first step toward understanding how exposure to BCE might affect human nerve cell development—knowledge that may one day provide clues about such neurological mysteries as autism spectrum disorder or attention deficit hyperactivity disorder.

To test her hypothesis, MBL scientist Carol Reinisch and her colleagues treated developing surf clam embryos (Spisula solidissima) with different combinations of BCE and studied their effects on nerve cell growth. “On a cellular level, clam neurons are extremely useful in studying basic mechanisms of cell development,” says Reinisch, an expert in PCB-induced neurotoxicity.

“Of the different combinations and strengths of BCE components tested, we found that all three together induce the greatest adverse response. Treating the embryos with the triple mixture resulted in increased production of a subunit of an enzyme called protein kinase A (PKA), which previous research suggests plays a role in neural development,” says Reinisch. “Fluctuations in PKA may influence not only neuronal maturation but also how neuronal networks are constructed during development,” she says. Alterations of this enzyme may affect neural development and neural connections by activating or inactivating other proteins.

Demonstrating that clam embryos are affected by BCE paves the way for additional studies that may help explain how exposure to BCE affects human nerve cell development and how it might relate to neurological disorders. “We can clearly state that we found an increase in a component of PKA, and PKA is known to be involved in neural development. The BCE mixture is capable of altering neural development, and alterations in neural development are thought to be a cause of autism,” says Jill Kreiling, first author of the paper and a member of Reinisch’s lab. But Kreiling cautions, “We cannot say at this time if the alteration we see in clam embryos is the same alteration that causes autism. That will require future research.”

In fact, Reinisch and Kreiling have already begun the next phase of their work. They are currently examining the origins of BCE toxicity at the single-neuron level to learn what genes are turned on and off by the exposure to the chemical mixture. The research is focused on a family of genes known as P53, which helps to regulate the cell cycle. They have also moved their studies to a new model system: the zebrafish, a vertebrate with more similarities to humans.

Reinisch’s work on BCE is funded by a STAR grant from the United States Environmental Protection Agency. Science supported by the STAR program is rigorously peer reviewed.

Media Contact

Pamela Clapp Hinkle EurekAlert!

More Information:

http://www.mbl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors