Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH researchers find way of regenerating cells key to hearing

14.01.2005


Finding someday may help treat hearing loss, neurodegenerative disorders



Selectively turning off a protein that controls the growth and division of cells could allow regeneration of the inner ear’s hair cells, which convert sound vibrations into nerve impulses. The discovery by a research team based at Massachusetts General Hospital (MGH) runs counter to current beliefs about these cells and could eventually lead to ways of preventing or treating hearing loss. The report will appear in the journal Science and is receiving early online release on the Science Express website at http://www.sciencexpress.org.

"These findings give us a potential stragegy for hair cell regeneration, which could have enormous implications for the treatment of hearing and balance disorders," says Zheng-Yi Chen, DPhil, of the MGH Neurology Service, the study’s senior author. "It also shows that cells that have been considered incapable of regeneration – like most nerve cells – can reproduce under the right conditions, which may have applications to neurodegenerative diseases."


Named for the hair-like projections on their surfaces, hair cells form a ribbon of vibration sensors along the length of the cochlea, the organ of the inner ear that senses sound. Receiving sonic vibrations through the eardrum and bones of the middle ear, hair cells convert them to electrical signals that are carried to the brain by the auditory nerve. Among the earliest structures to form in embryonic development, hair cells are very sensitive to damage from excessive noise, infections or toxins including some medications. Once damaged, hair cells do not naturally regenerate in mammals, and their death accounts for most types of acquired hearing loss.

Cells grow and divide through a process called the cell cycle, and many proteins have been indentified as controllers of the different cell cycle phases. Chen’s group started by carrying out a comprehensive assessment of which genes are active in the developing mouse ear and when the are expressed. The activity of certain genes suggested that the retinoblastoma (Rb) protein, known to suppress the cell cycle, could be important for halting the cell cycle in hair cells. To follow up that observation, the researchers used a genetically modified mouse strain in which Rb was no longer made in the inner ear.

They found that hair cells in the ears of these mice were significantly more numerous than in normal mice at the same stage of development. These additional cells retained the distinctive appearance of hair cells, performed functions characteristic of normal hair cells and appeared fully able to form proper connections with nerve cells. In addition, hair cells in the modified mice made proteins that indicated they were still actively regenerating, while cells in normal animals did not.

The researchers note that these findings will form the basis for the future work aimed at recovery of hearing through hair cell regeneration. In particular, they have to learn to control the presence of Rb for short times, allowing some regeneration but not too much. The genetic basis of hearing and deafness is almost identical in mice and in humans, so a successful mouse model may ultimately translate into therapy in human patients.

"It’s taken over 10 years of work to show that hair cells can regenerate in tissues, and I hope it won’t take another decade to achieve functional regeneration in a living animal," says Chen. "But my hope and belief is that, if we can do this in mice, we’ll be able to achieve it in people." Chen is an assistant professor of Neurology at Harvard Medical School (HMS).

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>