Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish may hold key to understanding human nerve cell development

06.01.2005


Glia appear essential for ’hair cells’ responsible for hearing and balance



Traditionally viewed as supporting actors, cells known as glia may be essential for the normal development of nerve cells responsible for hearing and balance, according to new University of Utah research. The study is reported in the January 6, 2005 issue of Neuron and is co-authored by scientists at the University of Washington.

"Using zebrafish as a model, we’ve demonstrated that glial cells play a previously unidentified role in regulating the development of sensory hair cell precursors -- the specialized neurons found in the inner ear of humans that make hearing possible. This research increases our understanding of how nerve cells develop and whether it may be possible to regenerate these types of cells in humans one day," said Tatjana Piotrowski, Ph.D., assistant professor of neurobiology and anatomy at the University of Utah School of Medicine.


Scientists long have known that glial cells, or simply glia, are essential for healthy nerve cells. However, in the last 10 years scientists have learned that glia aren’t just "glue" holding nerve cells together. Glia communicate with each other and even influence synapse formation between neurons.

Piotrowski’s research in zebrafish focuses on the development of sensory neurons known as hair cells. Like humans, zebrafish use hair cells to detect sound and motion. However, in humans hair cells are buried deep inside the inner ear making them difficult to access. Hair cells in zebrafish are located on the surface of their body and help the fish swim in groups and avoid predators.

"Zebrafish are a wonderful model for studying hair cell development for a number of reasons. The hair cells are exposed and can be easily seen under the microscope in the live fish. We can also visually identify the consequences of gene defects in the 200 to 300 embryos each female fish produces," she said.

By studying these mutant embryos, Piotrowski and her colleagues discovered that during development the zebrafish is "seeded" with future hair cells through a process known as placode migration. These precursor cells, called interneuromast cells, eventually go on to make hair cells, but only when they are sufficiently far enough away from the glial-ensheathed nerve.

"Once these cells are far enough away from the glia they begin to differentiate into hair cells. We know something in the glia is regulating development and acting as an inhibitory cue. It’s possible that this signal could also play a role in the development of stem cells throughout the nervous system. Much more research is needed to identify this signal but we’re optimistic our work has set the stage for future discoveries," said Piotrowski.

The University of Utah has one of the largest zebrafish facilities in the country with more than 6,000 zebrafish tanks. In addition to Piotrowski, six other University faculty members use the fish to study various clinical disorders including leukemia, colon cancer, congenital heart defects, muscular dystrophy and other birth defects.

Tatjana Piotrowski, Ph.D. | EurekAlert!
Further information:
http://www.neuro.utah.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>