Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gecko Feet Hold the Key to Self-Cleaning Adhesives

05.01.2005


Duct tape that never loses its stick. Bandages that come off without sticky residue or an "ouch."



Gecko feet may hold the key to the development of synthetic self-cleaning adhesives, according to a biologist from Lewis & Clark College. The research is published in the online early edition of the Proceedings from the National Academy of Sciences of the United States, or PNAS (http://www.pnas.org) during the week of Jan. 3, 2005 (Article #08304: "Evidence for self-cleaning in gecko setae").

"How geckos manage to keep their feet clean while walking about with sticky feet has remained a puzzle until now," said Kellar Autumn, associate professor of biology at Lewis & Clark College. "Geckos don’t groom their feet, and the adhesive on their toes is much too sticky for dirt to be shaken off. Conventional adhesives like tape just get dirtier and dirtier, but we discovered that gecko feet actually become cleaner with repeated use."


Autumn’s new research, published in PNAS, found that the microscopic adhesive hairs--or setae--that create the gecko’s adhesive qualities are also the first known self-cleaning adhesive. According to Autumn, gecko setae isolated from the gecko become cleaner by themselves.

"Our mathematical models suggest that self-cleaning in gecko setae is a result of geometry not chemistry," said Autumn. "This means that synthetic self-cleaning adhesives could be fabricated from a wide variety of materials. The possibilities for future applications of a dry, self-cleaning adhesive are enormous. We envision uses for our discovery ranging from nanosurgery to aerospace applications. Who knows--maybe a gecko-inspired robot with sticky, self-cleaning feet will walk on the dusty surface of Mars someday."

An interdisciplinary team of researchers, led by Autumn, earlier confirmed speculation that the gecko’s amazing climbing ability depends on weak molecular attractive forces called van der Waals forces, named after a Dutch physicist of the late 1800s. Van der Waals forces are weak electrodynamic forces that operate over very small distances but bond to nearly any material. Autumn’s research team rejected a 30-year-old model based on the adhesion chemistry of water molecules. Instead, the research team demonstrated that a gecko’s ability to stick to surfaces depends on geometry--not chemistry--to synthesize the world’s first gecko-based adhesive microstructure.

The setae (microscopic hairs) on the bottom of gecko’s feet are only as long as two diameters of a human hair. That’s 100-millionths of a meter long. Each seta ends with 1,000 even tinier pads at the tip. These tips, called spatulae, are only 200-billionths of a meter wide--below the wavelength of visible light. In 2002, Ronald Fearing, a researcher at the University of California at Berkeley, was able to produce two artificial hair tips, while Autumn and colleagues concluded that "both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures." Fearing’s group later made the first array of synthetic gecko hairs with long stalks (6 micron stalk) and relatively large diameters (6 micron diameter).

The team’s research is supported by the National Science Foundation and the Defense Advanced Research Projects Agency (DARPA). More information about Autumn’s research is available online at http://www.lclark.edu/faculty/autumn/pnas05.html.

| newswise
Further information:
http://www.pnas.org
http://www.lclark.edu/faculty/autumn/pnas05.html
http://www.lclark.edu

More articles from Life Sciences:

nachricht New contents: Neuronal Parkinson inclusions are different than expected
26.06.2019 | Universität Basel

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>