Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Discovery Shows How Embryonic Stem Cells Perform ’Quality Control’ Inspections

27.12.2004


Biologists at the University of California, San Diego have found a fundamental mechanism used by embryonic stem cells to assure that genetically damaged stem cells do not divide and pass along the damage to daughter stem cells.


Photo of mouse embryonic stem cells Credit: Tongxiang Lin, UCSD



Their discovery, detailed in an advance online publication of the journal Nature Cell Biology, solves the longstanding mystery of how embryonic stem cells, which have the potential to divide an unlimited number of times and differentiate to make all of the cell types in the body, are able to avoid duplicating cells that have sustained genetic damage.

“What we discovered is a primary mechanism that allows embryonic stem cells to perform quality control inspections during their self-renewal, the process by which these cells undergo unlimited cellular division to produce an unlimited number of daughter cells,” says Yang Xu, an associate professor of biology at UCSD who headed the research team.


“Since DNA damage can occur during normal cellular propagation as well as after the exposure of cells to DNA-damaging radiation and chemicals, it is critical for the embryonic stem cells to develop stringent mechanisms to ensure the repair of DNA damage and prevent the passage of DNA damage to their daughter cells. Unrepaired DNA damage will cause genetic instability and, ultimately, cellular transformation into cancer cells.”

Xu and his team made their discovery while working with embryonic stem cell lines from mice, which possess the same known properties and capabilities as human embryonic stem cells. They found that a protein, p53, known to play a critical role in the suppression of tumors in both humans and mice, is also used to maintain the genetic stability of embryonic stem cells.

The scientists, who included Tongxiang Lin, a UCSD postdoctoral fellow and the first author of the study, and Connie Chao, a graduate student in Xu’s laboratory, discovered that p53 activated by DNA damage in mouse embryonic stem cells directly suppresses the expression of a gene called Nanog, which is necessary for the self renewal, or unlimited duplication, of these stem cells. The suppression of Nanog promotes embryonic stem cells to differentiate into other cell types.

“The end result of all of these actions by p53 is to deprive embryonic stem cells with DNA damage the ability to self renew themselves and pass the DNA damage onto their daughter cells,” says Xu. “p53 also contributes to the eventual elimination of DNA damage in the embryonic stem cells that have already differentiated into specific cell types, thus preventing the development of cancerous cells.”

“These findings will open new avenues of research for those of us who study mouse embryonic stem cells on how these cells maintain genetic stability and self renewal,” he adds. “They will also provide a foundation for future studies involving human embryonic stem cells of how these cells maintain genetic stability during their self renewal.”

Other scientists involved in the study included Shin’ichi Saito, Sharlyn Mazur and Ettore Appella of the National Cancer Institute in Bethesda, Md., and Maureen Murphy of the Fox Chase Cancer Center in Philadelphia. The study was supported by a grant from the National Cancer Institute.

Yang Xu | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>