Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Discovery Shows How Embryonic Stem Cells Perform ’Quality Control’ Inspections

27.12.2004


Biologists at the University of California, San Diego have found a fundamental mechanism used by embryonic stem cells to assure that genetically damaged stem cells do not divide and pass along the damage to daughter stem cells.


Photo of mouse embryonic stem cells Credit: Tongxiang Lin, UCSD



Their discovery, detailed in an advance online publication of the journal Nature Cell Biology, solves the longstanding mystery of how embryonic stem cells, which have the potential to divide an unlimited number of times and differentiate to make all of the cell types in the body, are able to avoid duplicating cells that have sustained genetic damage.

“What we discovered is a primary mechanism that allows embryonic stem cells to perform quality control inspections during their self-renewal, the process by which these cells undergo unlimited cellular division to produce an unlimited number of daughter cells,” says Yang Xu, an associate professor of biology at UCSD who headed the research team.


“Since DNA damage can occur during normal cellular propagation as well as after the exposure of cells to DNA-damaging radiation and chemicals, it is critical for the embryonic stem cells to develop stringent mechanisms to ensure the repair of DNA damage and prevent the passage of DNA damage to their daughter cells. Unrepaired DNA damage will cause genetic instability and, ultimately, cellular transformation into cancer cells.”

Xu and his team made their discovery while working with embryonic stem cell lines from mice, which possess the same known properties and capabilities as human embryonic stem cells. They found that a protein, p53, known to play a critical role in the suppression of tumors in both humans and mice, is also used to maintain the genetic stability of embryonic stem cells.

The scientists, who included Tongxiang Lin, a UCSD postdoctoral fellow and the first author of the study, and Connie Chao, a graduate student in Xu’s laboratory, discovered that p53 activated by DNA damage in mouse embryonic stem cells directly suppresses the expression of a gene called Nanog, which is necessary for the self renewal, or unlimited duplication, of these stem cells. The suppression of Nanog promotes embryonic stem cells to differentiate into other cell types.

“The end result of all of these actions by p53 is to deprive embryonic stem cells with DNA damage the ability to self renew themselves and pass the DNA damage onto their daughter cells,” says Xu. “p53 also contributes to the eventual elimination of DNA damage in the embryonic stem cells that have already differentiated into specific cell types, thus preventing the development of cancerous cells.”

“These findings will open new avenues of research for those of us who study mouse embryonic stem cells on how these cells maintain genetic stability and self renewal,” he adds. “They will also provide a foundation for future studies involving human embryonic stem cells of how these cells maintain genetic stability during their self renewal.”

Other scientists involved in the study included Shin’ichi Saito, Sharlyn Mazur and Ettore Appella of the National Cancer Institute in Bethesda, Md., and Maureen Murphy of the Fox Chase Cancer Center in Philadelphia. The study was supported by a grant from the National Cancer Institute.

Yang Xu | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>