Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique provides insights into gene regulation

22.12.2004


Researchers at the University of Toronto have developed a new technique that enables them to examine the genetic material of cells in greater detail than ever before, a finding that could lead to better ways to study and diagnose diseases.
The U of T research is published in the Dec. 22 issue of Molecular Cell. The new technique developed by the investigators uses a modified type of "gene chip" and a computer program to accurately monitor alternative splicing, a cellular process through which basic genetic material becomes more complex and acquires the ability to control genetic messages (mRNAs) that are required for the development of complex organisms.

"Now that we can look at mRNA in more detail, it has opened the door to understanding more about some diseases," explains lead investigator Professor Benjamin Blencowe of U of T’s Banting and Best Department of Medical Research (BBDMR) and the Department of Medical Genetics and Microbiology, who notes out-of-control RNA splicing is involved in many human diseases, including cancers and birth defects. "The new information we can now obtain could also provide insights into new treatments."


Each cell in the human body contains about 25,000 genes. Although human tissues and organs all have the same genes, some of the genes are "turned on" and others "off". The complete set of genes in humans is only several times that of budding yeast and close to the number found in the significantly less complex nematode worm, C.elegans, a microscopic ringworm.

How very different organisms develop from comparable numbers and types of genes has been a major question since the genetic similarity was discovered. Scientists are trying to understand what turns a gene "off" or "on", or alters its activity when "on" – in other words, the process of gene regulation.

The answer may lie in the coding segments (exons) of human genes, which are separated by long, non-coding segments (introns). The exons can be spliced in different combinations to generate different genetic messages, or mRNAs, and corresponding protein products. This process, known as alternative splicing, is analogous to the editing of a film sequence, where different combinations of editing can lead to different messages being created.

Presently scientists rely on DNA microarrays, also know as gene chips, to measure the levels of mRNAs. An array is an orderly arrangement of samples of DNA. An experiment with a single DNA microarray can provide researchers information on thousands of genes simultaneously – a dramatic increase in throughput from the era when only one gene could be studied at a time.

The new system developed by the U of T team enables accurate measurements of the levels of individual exons that make up different mRNAs to be attained, which current gene chips are unable to do. These differences found in the individual exons may account for how very similar genetic material can result in marked differences between organisms.

Blencowe developed the system in collaboration with U of T professors Brendan Frey of the Department of Electrical and Computer Engineering and Timothy Hughes of the BBDMR and the Department of Medical Genetics and Microbiology. The research team also included Quaid Morris and Ofer Shai of the Department of Electrical and Computer Engineering and Qun Pan, Christine Misquitta, Wen Zhang, Naveed Mohammad, Tomas Babak, Arneet Saltzman and Henry Siu of the BBDMR.

Christina Marshall | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht New RNA sequencing strategy provides insight into microbiomes
17.12.2018 | University of Chicago Medical Center

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>