Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprise! Cells have second source of phosphate

20.12.2004


New source means new cellular communication



For 50 years, thousands of labs around the world have studied cells’ critical internal communications, and scientists had assumed the speakers were known. But now, in the Dec. 17 issue of Science, Johns Hopkins researchers report finding not just a new participant, but a brand new conversation that has implications for treating disease and understanding biology.

Much of cells’ internal communication revolves around two very important words -- "stop" and "go" -- elicited when a small bit, called phosphate, is added onto proteins. This addition turns protein activities up or down and fine tunes cells’ responses to what’s happening outside their borders. This communication can go awry in diseases, including cancer, and be corrected by various drugs.


The source of these phosphate bits has been known -- a molecule called adenosine triphosphate, or ATP. But in their new report, the Johns Hopkins scientists describe a brand new source of phosphate that seems to work with as many proteins as targeted by ATP, but in a completely different way.

"There are already drugs that affect particular roles of ATP to treat cancer and other conditions, so we envision drugs that increase or decrease specific activities of this new source of phosphate could be important in neurologic and psychiatric illnesses, and perhaps in cancer as well," says Solomon Snyder, M.D., professor and director of neuroscience, one of the departments in Johns Hopkins’ Institute for Basic Biomedical Sciences.

"Nobody in a million years would have thought there was another way for cells to add phosphate groups to proteins other than using ATP," he adds. "Addition of phosphates to proteins -- phosphorylation -- is the most fundamental signaling mechanism in all life, and the new source of phosphate represents a very different kind of process than the one we’ve known about. It represents a totally new form of cellular communication."

Unlike ATP, the new phosphate source, known as inositol pyrophosphate (IP7), modifies proteins without any help, just binding directly to the protein and leaving behind one of its phosphates, the researchers report. Their early evidence also suggests IP7 might be most important in regulating the release of chemicals in the brain and in controlling the cellular machinery that builds proteins.

While IP7’s newly found role is likely to surprise many, Snyder has been expecting it. In the early 1990s, he noticed the first reports that IP7 and a related molecule called IP8 existed, interesting to him because for 15 years, he’d been studying related inositol (pronounced in-AH-si-tahl) phosphates.

But unlike the molecules he’d been working with, which look like bracelets with three to six phosphate "charms," IP7 and IP8 had too many phosphates to fit on the bracelet. Instead, the seventh and eighth phosphates would have to be linked to another phosphate "charm" rather than to the "bracelet" itself.

"ATP has a similar phosphate-phosphate connection, so I speculated that IP7 and IP8 might also be able to give up that extra phosphate," says Snyder, who is also a professor of pharmacology and molecular sciences and of psychiatry. "Proving it turned out to be very difficult technically."

First, it took several years for then-graduate student Susan Voglmaier to isolate an enzyme that builds IP7 (from IP6), an advance the team published in 1996. It took a few more years for postdoctoral fellow Adolfo Saiardi, Ph.D., to clone the three enzymes that make IP7 and to use them to make IP7 in which the extra phosphate was radioactive.

After finally making sufficient quantities of radioactive IP7, Saiardi and postdoctoral fellow Rashna Bhandari, Ph.D., mixed it with a "puree" of mouse brain or kidney, which produced hundreds of radioactive proteins. After numerous experiments to rule out other possibilities, the researchers could finally conclude that IP7 gives away its extra phosphate to proteins.

"We think IP7 phosphorylation of proteins is as universal as ATP phosphorylation," says Snyder, whose lab is continuing to study IP7’s protein targets and where on proteins its phosphates are added. "The enzymes that build IP7 are most prevalent in the brain, but they are found everywhere. What we’ve learned so far is just the tip of the iceberg."

Already, Bhandari has discovered that two of the proteins most heavily phosphorylated by IP7 are involved in the ribosome, the cellular machine that reads genetic instructions and constructs proteins. IP7 also controls the cellular "mail room" -- the preparation and release of tiny packages that contain messengers, such as neurotransmitters in the brain that create movement, memory and mania.

The researchers also have shown in work described in the Journal of Biological Chemistry, online now, that proper activity of one of the enzymes that makes IP7 is critical in cell death -- because of IP7’s role in modifying proteins.

"So drugs that activate the enzyme and stimulate production of IP7 would increase cell death, which is what one wants to do in cancer treatment," says Snyder. "Drugs inhibiting the enzyme would prevent cell death, the goal in treating stroke and neurodegenerative diseases."

The first proof of how ATP works was the impetus for the 1992 Nobel Prize in Physiology or Medicine. During the mid-1950s, the awardees, Americans Edmond Fischer and Edwin Krebs, isolated the first example of an enzyme that takes ATP’s phosphate and gives it to a protein, and showed that the phosphate changes the protein’s function.

Since then, scientists have found and studied thousands of other ATP-controlled proteins. While IP7 also controls protein activity, its role in cellular communication -- coordinating internal activities to respond to external events -- is likely quite distinct from ATP’s, given the differences Snyder and his colleagues have already observed. IP7 may even add its phosphate to phosphates already on proteins, which, if confirmed, is completely unheard of, says Snyder.

Authors are Saiardi, Bhandari, Snyder, Adam Resnick and Adele Snowman, all of Hopkins. Saiardi is now at University College London. The research was funded by the National Institute of Mental Health and the National Institute on Drug Abuse.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>