Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to understanding how blood and blood vessel cells develop discovered

15.12.2004


Mount Sinai School of Medicine study validates use of embryonic stem cell as model for study of blood and blood vessel cell development



Common sense leads to the conclusion that if you have blood cells you must have blood vessels and that if you have blood vessels they must have blood to carry. Researchers at Mount Sinai School of Medicine have presented the first clear evidence that nature ensures both develop together by using a common progenitor cell.

Scientists have long hypothesized about the existence of a common origin for both vascular cells and haematopitic cells --- the blood-forming cells that can mature into red blood cells and important immune cells. A new study that appeared this month in Nature gives the strongest proof yet for this theory.


Gordon Keller, PhD, Professor of Gene Therapy and Molecular Medicine and colleagues identified the shared precursor cell, called the hemangioblast in early mouse embryos. While the existence of this cell was first proposed over one hundred years ago, previous studies have only shown that such a cell type exists in cultures of differentiated embryonic stem cells grown in petri dishes.

"Now that we have proven that the same steps are involved in the production of blood and blood vessels in the embryo as has been observed in the petri dish, we have validated the usefulness of the embryonic stem cells as a model," said Dr. Keller.

Dr. Keller and colleague tagged a certain subpopulation of the cells with a fluorescent protein and showed that the labeled cells gave rise to both blood and blood vessel cells. They conducted further experiments to define the distribution of these cells throughout the embryo.

"We’re hopeful that this work will provide insight into the therapeutic potential of embryonic cells for the treatment of blood cell disorders such as leukemia, and further that it will help to identify the factors that influence embryonic cells to form a particular cell type."

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>