Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new gene in colon cancer

14.12.2004


A naturally occurring COX-2 inhibitor



Cancer researchers at the Case Western Reserve University (Case) School of Medicine, University Hospitals of Cleveland (UHC) and the Howard Hughes Medical Institute have found a "Celebrex-like" gene that suppresses the growth of colon cancer. The researchers discovered that the gene, called 15-PGDH, is found in normal cells and is virtually undetectable in colon cancer cells. When the researchers restored the gene in tumor cells and injected them into immune-deficient mice, the mice showed little or no tumor development. The study appears in the Dec. 14 issue of the Proceedings of the National Academy of Sciences. The gene 15-PGDH acts as an antagonist to control an enzyme called COX-2. An increase in COX-2 is a major early event in the genesis of human colon tumors.

Sanford Markowitz, M.D., the Francis Wragg Ingalls Professor of Cancer Genetics at Case and UHC and senior author of the paper, said, "This gene may represent the first of a one-two punch in colon cancer. In colon cancers a dramatic increase of COX-2 is seen. 15-PGDH would act to antagonize and check this increased COX-2 activity. Without 15-PGDH present,unchecked COX-2 goes on to cause abnormal changes on the cellular level, which may lead to tumor development."


Previous studies have shown that patients who take nonsteroidal anti-inflammatory drugs (NSAIDs), which are COX-2 inhibitors, have a lower incidence of colon cancer. COX-2 inhibitors have been shown to shrink the size of tumors in mice. Markowitz likens the 15-PGDH gene to a naturally occurring COX-2 inhibitor. (Celebrex, a popular arthritis drug, is also a COX-2 inhibitor.)

Markowitz found that 15-PGDH is directly controlled and activated by another gene, called TGF-beta. Normally, TGF-beta sends a signal that allows the colon to shed cells weekly as a way of helping to block development of colon cancers. In 1995, Markowitz discovered colon cancers have mutations that inactivate the TGF-beta pathway.

"If there is no TGF-beta signal, there is no 15-PGDH. That means the opponent to COX-2 is gone, and the COX-2 oncogene activity is unopposed," said Markowitz. "This interaction between TGF-beta and 15-PGDH points to the importance of the TGF-beta system in suppressing colon cancer. These genes give us targets that we can aim for in the development of new drugs or gene therapies that may help us treat or prevent colon cancer," said Markowitz, who is also an investigator with the Howard Hughes Medical Institute.

Lead authors on the paper are Min Yan of the departments of medicine, molecular and microbiology at Case Western Reserve University School of Medicine and the Ireland Cancer Center at University Hospitals of Cleveland, and Ronald M. Rerko of Howard Hughes Medical Institute. Also involved were researchers from the University of Kentucky and the Protein Design Laboratories in Freemont, Calif.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

nachricht Scientists unveil completely human platform for testing age-specific vaccine responses
20.11.2018 | Boston Children's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>