Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baby songbirds and human infants learn sounds in similar ways

14.12.2004


Of all the world’s animals, only humans, some kinds of birds and perhaps some porpoises and whales learn the sounds they use to communicate with each other through a process of listening, imitation and practice. For the rest, including nonhuman primates, these sounds develop normally in the absence of external models.



Now Rockefeller University scientists have found that zebra finches, songbirds native to Australia, use infant-like strategies to learn their song. Some finches focus on perfecting individual song components, referred to as "syllables," while others practice longer patterns called motifs. Which strategy they choose, or what combination of strategies, seems to depend on what their siblings are doing. In time, all are able to sing the same adult song.

The results, reported in the December 13 online issue of Proceedings of the National Academy of Sciences, are the first to show a social influence on how birds learn their song by analyzing song-learning with birds kept in family groups rather than in isolation chambers.


The Rockefeller team also shows for the first time that individual birds, of the same species, can follow different strategies to get to the same end point of singing the adult song. Until now, scientists thought that the vocal learning process in birds was mainly a matter of filling in details in a pre-existing developmental program. If so, then this program is, in zebra finches, a very flexible one. "This research points to a remarkable parallel in vocal learning in infants and some songbirds" says senior author Fernando Nottebohm, Ph.D., Dorothea L. Leonhardt Professor and head of the Laboratory of Animal Behavior at Rockefeller.

"In both cases vocal learning seems to be approached as a challenge in problem solving," says Nottebohm, whose studies in canaries in the 1980s provided the first evidence of spontaneous neuronal replacement in the adult vertebrate brain.

A problem-solving approach may apply to other kinds of sensory motor learning beyond vocal learning, he added, suggesting that zebra finches may offer further insights into human learning. "I find it amazing that something that infants, with brains weighing approximately 1,000 grams, do over a period of years can be accomplished, perhaps in a similar way, by young songbirds over a period of weeks, with brains weighing just 1 gram," says Nottebohm.

"Of course," he adds, "the diversity of sounds mastered by the young birds is much smaller, but all the same there is a remarkable parallel between what they do and the way in which humans acquire the sounds of language."

To learn to sing, a young male zebra finch (only the males sing) first has to hear and memorize the song of a nearby adult male. This begins to happen about 20 days after the bird hatches. By 35 days of age, he begins to imitate. At first he produces what scientists call a subsong -- considered analogous to babbling in human infants.

The young male sits, eyes closed and feathers ruffled, and burbles a stream of variable sounds that are soft and rambling in comparison to the louder, very structured, adult song. When he makes these soft sounds, he is not communicating to other birds. Gradually the syllables of the final song become more recognizable. By 80 to 90 days of age, the bird is both sexually mature and sings the song he will use in courtship. After that he sings that song exactly the same way every time and will do so for the remainder of his life. Zebra finches can live for up to 8 years.

The Rockefeller University studies are the first to investigate whether young birds take different approaches to mastering the sounds they imitate. "No one had thought a lot about strategies," says Nottebohm. "How, starting from an unstructured beginning, do you approach the final stereotyped song?"

To investigate this question, Wan-chun Liu, Ph.D., a postdoctoral fellow and first author of the paper, and Nottebohm studied 37 young male zebra finches from 15 clutches that were kept in cages that they shared with their parents and siblings. In nature zebra finches are highly social birds that breed in colonies of up to several hundred pairs. A young bird learns its song by imitating his father or other adult males, often copying different parts of the song from different adults.

Liu observed the birds and recorded them on tape, at first every other or every third day. Between days 35 and 50, as the young birds began imitating, they were observed for six or seven hours a day. "It’s very difficult when more than two birds are singing together to tell which bird is producing which song," says Liu. To do so, he spoke into the microphone to identify which bird was singing.

The recorded songs were then analyzed with a computer program that produces a sound spectrogram -- a visual representation of the sound that plots frequency over time. This allowed the researchers, with help from Timothy Gardner, Ph.D., another postdoctoral fellow, to quickly see similarities and differences among the songs. Adult male zebra finches sing only one song, a mixture of scratchy and nasal sounds clustered into several distinct "syllables," with each syllable preceded and followed by a brief silent interval. The entire song lasts about one second. "It’s very brief and unassuming and not particularly musical," says Nottebohm, "but practical to quantify."

By the time the birds were 43 days old, two clear strategies of imitation were apparent. About half the birds tended to repeat one song syllable many times; from these repetitions all of the syllables in the adult song eventually emerged. This was the repetition strategy. The others attempted to sing the entire song motif, with all its different syllables, like their adult model, and did so in a way that was noisy and imprecise. This was the motif strategy. Of the latter birds some included the silent intervals between the different syllables and others jumbled all the sounds together without interruptions. In one group of three siblings, each bird followed a different strategy although all were imitating the same adult song, that of their father.

To better quantify their results, the Rockefeller scientists used computer software that analyzes pitch, frequency modulation, tonality on a scale from pure tone to white noise, and spectral continuity, which allows integration of the information over time. This analysis allowed them to compare and quantify the similarities between sounds, how the sounds changed over time and the extent to which they eventually matched the adult song being imitated.

Liu also observed 12 additional birds that were removed from their parents and siblings when 20 to 25 days old and housed individually in soundproof chambers with one adult male zebra finch to imitate. These birds used both the syllable-repetition and the motif strategies to learn their song, but combined the two more often than the birds raised with their families. Regardless of the strategy followed, all the birds mastered the imitation at about the same age.

The researchers propose that in a family setting, a young zebra finch chooses a strategy different from that of his siblings, perhaps to better track his own vocal development as he learns the song.

Earlier studies of vocal learning in zebra finches have focused on single birds housed alone imitating a recorded song. "Nobody followed what happens if you put several birds together," says Liu. "The diversity of learning styles became apparent when we studied the birds under conditions closer to nature. They try to avoid each other’s style of song learning."

"This study suggests that social interactions greatly affect the way a song is learned," he adds.

Human infants also follow different routes toward mastering the sounds of language, for reasons that remain unknown. Some infants focus at first on repeating individual words and others go through a stage of short, jumbled phrases, mostly unintelligible, with the cadence and inflection of adult speech. Eventually the individual words become clear.

"In both infants and zebra finches vocal learning does not unfold in a pre-set manner, but rather emerges as an exercise in problem solving that leaves much room for external influences and individual learning styles," Nottebohm says. "We’re not teaching our zebra finches how to learn their song -- how to get there is totally up to the birds."

This research was supported in part by the National Institutes of Health, the Mary Flagler Cary Charitable Foundation, the Herbert and Nell Singer Foundation and the Phipps Family Foundation. Liu also was supported by a Li Memorial Scholar Fund fellowship.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>