Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Injectable gel could speed repair of torn cartilage

13.12.2004


In a project that will likely be watched by football players, runners and other athletes, researchers at MIT and Harvard Medical School say they are developing an injectable gel that could speed repair of torn cartilage, a common sports injury, and may help injured athletes return to competition sooner. The technique uses the patient’s own cartilage-producing cells and has the potential to be more effective and less invasive than conventional cartilage repair techniques, which may include extensive surgery, they say.



When the liquid mixture is injected into areas where cartilage is torn, such as a knee joint, the material hardens into a gel upon exposure to ultraviolet light, leaving the transplanted cells in place so they can grow new cartilage where it is needed. The biodegradable material will be described in the Jan. 10 issue of Biomacromolecules, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

Torn cartilage is an extremely painful, hard-to-heal injury, particularly since cartilage does not regenerate on its own. It most often occurs as a result of traumatic injuries, as during sports, and is most common in the knee joint, but the condition also can occur as a result of normal daily activity. Conventional treatment methods include rest, pain medication and, sometimes, invasive repair surgery. Patients undergoing surgery can face a slow, painful recovery.


“Using a patient’s own cartilage-producing cells, our goal is to place the cells into our new gel and inject them into the injury site so that cartilage grows where it is needed,” says study lead author Jason A. Burdick, Ph.D., a postdoctoral fellow in the Department of Chemical Engineering at the Massachusetts Institute of Technology in Cambridge, Mass. “The gel itself won’t initially replace damaged cartilage, but will provide an optimum growth environment for implanted cartilage-producing cells so that new cartilage can be formed and help restore function.”

The gel material itself is composed of a natural polysaccharide called hyaluronic acid which is modified with photoreactive groups (methacrylates) and a photosensitive molecule. Burdick compares the procedure, in which the injectable liquid is turned into a gel, to “making Jell-O.” But instead of using cold temperature for gelation, this technique uses light, which he says is a much more rapid and controlled process. Don’t look for the gel anytime soon, he warns, as the research is in its early testing stages and could take at least five years before it’s available to consumers. “We would eventually like to make a material that is as strong as cartilage in order to bear the load of the joint immediately after implantation,” Burdick says, “but we’re not quite there yet.”

In a proof-of-concept experiment, the researchers implanted the material, using cartilage-producing cells (chondrocytes) obtained from the ears of pigs, under the skin of a small group of mice, which are commonly used to examine cartilage formation in a physiological environment. The material was gelled with exposure to ultraviolet light and cartilage formation was examined over the course of three months. The material produced progressively higher amounts of healthy new cartilage during the study period, according to the researchers. Although ultraviolet light is used in the current gelling process, the process eventually can be performed using visible (regular) light, the scientists say.

Because the starting material is liquid, it potentially can be used with arthroscopic surgery instruments for a less invasive procedure, Burdick says, adding that the material will likely work best for repairing small, localized cartilage defects and injuries. As torn cartilage often accompanies damaged ligaments, the technique also could be used to improve the outcome of ligament repair surgery, he says.

Burdick predicts that it might one day be possible to use the technique to repair worn cartilage covering the large surface area of joints, as occurs in arthritis. The same material, he says, also can be used as “clay” to custom-mold new cartilage outside the body for eventual use in plastic surgery reconstruction, such as building new ears and noses.

The research team soon plans to test the new material on actual animal models with torn cartilage. If those tests are successful, human studies could eventually follow. Until then, no one knows how fast it will repair damaged cartilage in humans, but researchers are optimistic that it will be much speedier once the technique is optimized. For injured athletes anxious to resume their career, the new material could make a difference.

The National Institute of Dental and Craniofacial Research provided funding for this study. The project is one of several biomaterial innovations being developed in the laboratories of study leader Robert Langer, Sc.D., one of the pioneers in tissue engineering and biomaterials research.

Other researchers involved in this study include Xinqiao Jia, Ph.D., of MIT; Cindy Chung, B.S., currently a Ph.D. candidate at the University of Pennsylvania; and Mark A. Randolph, of the Harvard Medical School.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>