Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover clues to the mystery of ’gene deserts’

09.12.2004


Like the famous living deserts of the Southwest, the so-called "gene deserts" in our DNA are teeming with activity. The trick is knowing where to look for it. A new roadmap to the location of DNA segments that are significant in medical, biological and evolutionary research could emerge from studies published today (Dec. 9) by scientists at Lawrence Livermore National Laboratory (LLNL) and their colleagues. The work is reported in the online version of the journal Genome Research.

Gene deserts are long stretches of DNA between genes that were once thought to have no biological function, and were dismissed as "junk DNA." As scientists probe deeper into the DNA’s double helix, however, they are discovering that many of these "non-coding" segments actually play an important role in regulating gene activity. Research last year at the U.S. Department of Energy’s Joint Genome Institute (JGI) and Lawrence Berkeley National Laboratory (LBNL), for example, has shown that gene deserts contain DNA sequences that can switch genes on and off over considerable distances along the DNA molecule.

Paradoxically, the same JGI and LBNL scientists were recently able to remove giant chunks of gene desert DNA - whole chapters in the "book of life" - from laboratory mice with no apparent effect on the animals. Many of the deleted sequences are shared by mice and humans, and thus may have no function in humans as well. In an effort to resolve the paradox and to help researchers more easily locate critical segments along the vast stretches of DNA deserts, scientists from LLNL, LBNL, and the Pennsylvania State University developed computational tools to decipher gene regulation by comparing the genomes of many different species.



When they used the tools to compare the human genome with the recently sequenced chicken genome, they discovered that gene deserts actually fall into two distinct categories: those that remain relatively stable throughout eons of evolution, and those that undergo significant variation.

Ivan Ovcharenko, a bioinformatics scientist in LLNL’s Computation Directorate who led the study, said that many lines of evidence show that the stable desert regions, which are able to resist genomic rearrangement and fend off infringement by repetitive segments of junk DNA, are home to a surprisingly large fraction of the genome’s non-coding regulatory elements. "There are many indications that stable gene deserts represent treasure boxes of multiple gene regulatory elements, guarding the proper complex function of the flanking genes," he said.

The variable regions, on the other hand - which make up about two-thirds of the gene deserts and as much as 20 percent of the entire three-billion-base-pair human genome - "can be devoid of biological function, suggesting that a significant fraction of the genome may not be essential. "This information is very important for researchers looking for mutations leading to diseases," Ovcharenko said, "because it highlights large areas of the genome that are not likely to be involved in causing diseases."

JGI Director Eddy Rubin, a geneticist and physician who led the earlier studies indicating the presence of both functioning and non-functioning gene deserts, agreed: "If you’re a gene hunter looking for genetic clues to diseases," he said, "it might be a good idea to steer clear of regions that are devoid of critical functions or importance," such as those that were deleted in the JGI-LBNL mouse experiments.

The gene desert research is among a number of studies being published today in Genome Research online and Nature resulting from the public release of the chicken genome sequence earlier this year. LLNL and JGI researchers, led by Lisa Stubbs in LLNL’s Biology and Biotechnology Research Program and Susan Lucas at JGI, contributed to the Nature paper describing the primary sequence and comparative analysis of the chicken genome, along with Ovcharenko and Laurie Gordon of LLNL and Tijana Glavina and Andrea Aerts of JGI.

Stubbs and her team joined with JGI to compare human and chicken genomes in 2002 and focused on human chromosome 19, one of three chromosomes sequenced by JGI as the Department of Energy’s contribution to the Human Genome Project. The LLNL/JGI team’s high-quality sequence of parts of the chicken genome related to chromosome 19 was used in two of the papers published today in Nature.

Participating with Ovcharenko in the gene desert study and in the development of a new sequence comparison tool called Mulan - shown to be instrumental in deciphering evolutionary clues by comparing multiple primate, mammalian and fish species with chicken - were Stubbs and Gabriela Loots of LLNL, Marcelo Nobrega of the Genomics Division at LBNL, and Ross Hardison, Webb Miller, Belinda Giardine, Minmei Hou and Jian Ma of the Pennsylvania State University. The papers describing both projects will appear in the January print issue of Genome Research.

Charlie Osolin | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>