Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Bacteria and a Nematode: Natural Born Pest Killers

06.12.2004


In a world where 842 million people suffer from chronic hunger, insect pests consume 20-30 percent of world food crops. Chemical pesticides are increasingly expensive, ineffective and environmentally aggressive, killing beneficial insects and, when transmitted through the food chain, moving in unwanted directions.



The search for eco-friendly bio-insecticides has focused mainly on developing transgenic crops that express natural protein toxins. The most successful, by far, are crops that express the toxin from the bacterium Bacillus thuringiensis (BT). However the widespread use of BT transgenics has raised new—and contradictory—concerns; farmers fear the rapid evolution of BT-resistant insects and some consumers fear the rapid marketing of transgenic foods.

In the search for alternatives, scientists are revisiting a ‘natural’ biological control strategy used by insecticidal bacteria that live symbiotically with “entomopathogenic” nematodes. That’s a mouthful to describe an insect-killing bacterium that lives inside an unaffected worm host. The classic example is the bacterium, Xenorhabdus nematophila (X. nematophila; Latin for “loves nematodes”) and nematodes of the genus, Steinernema. Bacterium-nematode teams live almost their entire lifecycle inside larval-stage insects. The Xenorhabdus-Steinernema (‘X-S’) team is being used successfully to combat Lepidoptera, Coleoptera and Diptera pests.


Puneet Khandelwal, working with Prof. Rakesh Bhatnagar at the Centre for Biotechnology, Jawaharlal Nehru University, and Dr. Nirupama Banerjee at the International Centre for Genetic Engineering in New Delhi wanted to know why the X-S team was so deadly effective against one of the world’s costliest pests, Helicoverpa armigera (a.k.a. the scarce bordered straw moth). This moth’s larvae eat Zea mays, which is corn to Americans, maize to Europeans, and sustenance to millions in the Third World.

Khandelwal and colleagues succeeded in identifying the insecticidal factor. The active component was found in a large complex normally associated with the bacterial outer membrane, and was also present in or on outer membrane vesicles (OMVs) released from the bacterial surface, says Khandelwal. They then searched through OMV components and identified a small (17 kDa) toxic protein. When purified, this protein was toxic to cultured larval cells and directly killed H. armigera larvae. Gene cloning and sequencing showed this protein is related to a class of bacterial outer membrane proteins that form protrusions, called pili or fimbriae, which often help bacteria attach to host cells during infection. Similar to pili proteins, the purified 17 kDa protein self-associated to form oligomers, each of which was connected to the next by a strand. Most importantly, the recombinant 17 kDa protein killed H. armigera larvae, demonstrating its potential as a biological control agent in a world desperately in need of new ideas.

Insecticidal activity associated with a 17 kDa pilin protein of Xenorhabdus nematophila, P. Khandelwal,1 R. Bhatnagar,1 N. Banerjee2 ; 1 Centre For Biotechnology, Jawaharlal Nehru University, New Delhi, India, 2 Insect resistance, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

At the meeting: Session 329, Structure & Function of Membrane Proteins II, Poster Presentation 1726, Halls D/E. Author presents: Tuesday, Dec. 7, 1:30— 3:00 PM.

| newswise
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>