Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing the Kiss of Death

06.12.2004


At the 2004 ASCB Meeting: Visualizing the Kiss of Death



The very idea threw the Victorian poet Alfred Lord Tennyson into a funk. “Nature, red in tooth and claw,” Tennyson called the nightmarish idea that life was an unending battle to eat or be eaten. If only Tennyson could have seen the latest self-defense videos made by Daniela Malide and others at the National Institutes of Health in Bethesda, MD. Using time-lapse confocal laser scanning microscopy, Malide captured human T-cells picking up distress signals from cells infected with a virus and zeroing in for the kill.

Scientists have worked out experimentally many of the mechanisms and tactics of the immuno-surveillance system but Malide’s real-time videos show the action as it unfolds. The videos also revealed for the first time that “killer” T-cells take far longer to dispatch their viral enemies than was generally believed. Instead of a brisk 10-minute rubout, these killer T-cells can take up to two hours to mount a fatal assault.


The struggle begins when MHC (Major Histocompatibility Complex) Class I molecules inside cells infected with vaccinia virus, the virus used for small pox vaccination, grab bits of scrap viral protein and present them on the cell surface to flag down passing Tcd8+ killer cells. Nearly all cell types in the body have MHC class I molecules and the small pieces of viral proteins or peptides that they collect in the cytosol are a byproduct of imperfect protein synthesis by the virus. To passing T-cells, these viral peptides are highly suspect and call for a closer look. The T-cells arrive “ready to kill,” packing death-inducing proteins (perforin and granzymes) in their lytic granules.

On the video, the T-cells make contact, fluorescent labels marking their cell surface and interior poison granules. Inside the infected cells, another fluorescent label shows the vaccinia virus glowing brightly as it goes about its own deadly business of replicating. Then comes the surprise. Says Malide, “We found that contrary to the general notion that target cell lysis often occurs within 10 minutes of establishing firm contact with T-cells, lysis occurs with much greater delay, generally 45 to 120 minutes. During this time, many T-cells remain in contact with target cells, and we frequently see the transfer of viral proteins and MHC Class I molecules to T-cells.”

Only after this prolonged interaction does the killer cell kill. The perforin and granzyme explode inside the infected cell, the glowing vaccinia virus goes abruptly dark, and the target cell disintegrates. Even viewed through a microscope, it is a violent ending, revealing Nature to be, if not red in tooth and claw, then fluorescent green in killer T-cells.

Real Time Visualization of Cytotoxic T Lymphocyte Killing of Vaccinia Virus Infected Target Cells, D. Malide,1 S. Basta,2 J. R. Bennink,2 J. W. Yewdell2 ; 1 Light Microscopy Facility, NIH-NHLBI, Bethesda, MD, 2 Laboratory of Viral Diseases, NIH-NIAID, Bethesda, MD.

At the ASCB Meeting: Session 173, Minisymposium 4: Cell Biology of the Immune System, Room 146. Author presents: Sunday, Dec. 5, 3:30 — 5:45 PM.

| newswise
Further information:
http://www.ascb.org/publicpolicy/pressbooks/pressbook04.html
http://www.ascb.org

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>