Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Follow the Embryonic Stem Cell Road to Cardiac Cell Progenitors

06.12.2004


Even the Wizard of Oz couldn’t give the Tin Man a heart but the Johns Hopkins Medical Institution laboratory of John Gearhart has taken another small step on the road toward replenishing damaged cardiac tissue with pre-cursor cardiac cells grown from human embryonic stem cells (ES cells). Gearhart and his colleague, Nicolas Christoforou, here reveal preliminary data demonstrating what they say is a highly reproducible system for deriving cardiac progenitor cells from ES cells through controlled differentiation.



Differentiation is cell fate. The fate of any embryonic stem cell in a human blastocyst is virtually unlimited since any ES cell can differentiate into any of the three primary germ layers in the embryo— the ectoderm, mesoderm and endoderm. These germ cells can, in turn, differentiate into any of the 200 cell types in the human body. The ability to control differentiation in the laboratory is vital if ES cells are to be used as research tools into fundamental cell development and as a possible source for cell-based transplantation therapies.

The Gearhart lab reports that grown in culture, differentiating ES cells form three-dimensional structures termed embryoid bodies (EBs). Molecular signals and proteins expressed in EBs are similar to those present in early embryogenesis. These markers can be used as indicators of the cell types present in the differentiating EBs. The cells fated to become heart muscle, cardiomyocytes, differentiate in vivo through a conserved signaling pathway that contains both activating and inhibitory signals. These signaling pathways allow an area of the embryonic mesoderm to differentiate first into cardiac progenitor cells and then into the many cell types that constitute a functional heart. The presence of cardiac progenitor cells and cardiomyocytes in the differentiating ES cells is directly correlated to the expression of the same activating and inhibitory signals normally found in heart.


Expression of the appropriate molecular markers (genes with names like Nkx2.5, Tbx5, Tbx20) pinpoints the initial formation of cardiac progenitor cells in differentiating EBs followed by their further differentiation into functional cardiomyocytes (with yet another set of marker genes expressed--aMHC, TNNT2). The level of gene expression is also directly correlated to the percentage of cardiac progenitor cells in the EBs. Introduction into ES cells of a transgene that results in expression of a fluorescent protein under the control of the DNA sequences that control Nkx2.5 expression enables the researchers to observe the emergence of these cells in vitro in real time.

Preliminary data show that the emergence of cardiac progenitor cells and the pattern of marker expression in EBs closely resemble cardiogenesis in vivo, and make this a highly reproducible system of deriving cardiac progenitor cells from ES cells. Enhancement of cardiogenesis is achieved through monitoring of the level of cardiac gene expression while altering the differentiation conditions. Says Christoforou, “The information gained from this system allows the identification and efficient isolation of cardiac progenitors from ES cells. These cells are ideal candidates not only for cell-based transplantation therapies, but also for gene expression assays.”

Cardiac progenitor cells from embryonic stem cells, N. Christoforou, J. Gearhart; ICE, Johns Hopkins Medical Institution, Baltimore, MD.

At the meeting: Session 238 Embryonic Stem Cells, Poster Presentation 1208, Halls D/E. Author presents: Monday, Dec. 6, Noon—1:30 PM.

| newswise
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>