Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover baisis for determining handedness in chimpanzees

06.12.2004


Hand preference and language go hand-in-hand, or do they? According to researchers at the Yerkes National Primate Research Center of Emory University, handedness is not associated with the language area of the brain, as has been the accepted scientific thought throughout history. Rather, handedness is associated with the KNOB, the area of the brain known for controlling hand movements in primates and, now, for determining handedness in chimpanzees. The researchers report their groundbreaking findings in the December 6 issue of Behavioral Neuroscience.



According to Bill Hopkins, PhD, research associate in the Division of Psychobiology at the Yerkes Research Center and the study’s lead investigator, "The dominant scientific view has linked hand preference in humans with the area of the brain that controls language. After observing hand preference in chimpanzees, which have no comparable language capabilities, we concluded there must be another reason for handedness. Because human and chimpanzee brain structures are so similar, we wanted to determine if human handedness evolved from an area of the brain other than the language area."

Hopkins and his research team coordinated a series of motor tasks with chimpanzees to determine each animal’s hand preference and then looked at magnetic resonance imaging (MRI) scans of the animals’ brains. They found asymmetries in the KNOB and in the area that is homologous to the human language brain region. A detailed review of the data showed the asymmetries in the KNOB corresponded to right- and left-handedness whereas the asymmetries in the language area did not, leading the researchers to conclude handedness is linked explicitly to the KNOB and not other brain regions.


In a separate study, which is published in the same issue of Behavioral Neuroscience, Dr. Hopkins’ team supported their findings about asymmetry by confirming that the brain structure of chimpanzees is similar to the brain structure of humans. Using MRI scans of the chimpanzees’ brains, the researchers discovered asymmetries in each brain hemisphere, a characteristic previously thought unique to humans. "For years, researchers thought asymmetry is part of what distinguished the human brain from that of chimpanzees, but our results challenge that theory," said Dr. Hopkins.

To further explore what distinguishes the human brain from those of other species, Yerkes researchers are conducting a variety of studies to identify the changes in gene activity and biochemistry that occurred during human brain evolution as well as related changes in the connectivity and functions of the brain.

The Yerkes National Primate Research Center is one of eight national primate research centers funded by the National Institutes of Health. The Center is a recognized leader for its biomedical and behavioral studies involving nonhuman primates, which provide a critical link between research with small animals and clinical trials with humans. Yerkes researchers are poised with the knowledge and passion to conduct groundbreaking research programs and are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Yerkes researchers also are leading programs that include seeking a better understanding aging and cognition, pioneering organ transplant procedures, determining the behavioral effects of hormone replacement therapy and shedding light on human behavioral evolution.

Kelly Thompson | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>