Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prediction of gene function in mammals

06.12.2004


Gene function in mammals can be quickly and reliably predicted using a high-throughput analysis of patterns of RNA expression, according to an article published today in Journal of Biology. This challenges the conventional view that tissue-specificity is the best predictor of function, and could speed up the quest to understand whole genomes, in humans and other mammals, by decades. The authors have made their mouse dataset openly accessible online to the research community.



Tim Hughes and colleagues from the University of Toronto, Canada, looked at the mouse genome using a technique previously only applied to simple organisms such as yeast and the nematode worm C. elegans. In yeast and other simple organisms, the expression of genes with similar functions tends to be coordinately regulated. In these organisms, identifying correlated expression of known and unknown genes can help predicting the function of a novel gene. It has been assumed that this strategy couldn’t be applied to mammals, but instead that genes expressed in the same tissue are most likely to have a functional relationship, making tissue-specificity the best indicator of function.

In an experiment that challenges this view, Hughes and colleagues created and analysed a microarray panel of over 40,000 known mouse mRNAs, expressed in 55 tissues. Their results showed that genes from the same Gene Ontology ’Biological Process’ (GO-BP) category – which indicates the physiological function of their encoded protein, such as ’response to temperature’ or ’amino acid metabolism’ - are transcriptionally co-regulated, independent of the tissue in which they are expressed.


To show that this approach could be used to predict novel gene function, the team then carried out a co-expression analysis on genes of unknown function. They analysed the microarray results using a machine learning computational algorithm called a support vector machine (SVM). SVMs had never been used on this scale before: the programme analysed over 12,000 genes and predicted a function, out of 587 GO-BP categories, for each of them. A number of predictions resulting from the SVM analysis were confirmed by results that are already in the literature, and in the case of one gene of unknown function, P1W1, by directed experimentation. A highly conserved yeast homologue of P1W1 protein was shown to act biochemically as would be expected for a protein with a role in RNA processing, as predicted by the algorithm.

"We examined the extent to which [transcriptional co-expression] is effective for our data, and we show that it yields almost universally superior predictions of gene function in comparison to using information regarding simple tissue specificity or tissue restriction" say the authors.

This new, quick, high-throughput method for predicting mammalian gene function merely from the pattern of RNA expression could make tissue specificity based predictions a thing of the past and revolutionize the field of functional genomics. The results of the study also hint at a more complex transcriptional control in mammals, whereby transcription factors may be regulating the transcription of functionally related genes across different tissues.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>