Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The logic of life brings order to our genes

30.11.2004


It is tricky enough to get a soccer team of eleven players to cooperate and work as one – but what would it be like if there were 25,000 players on the field? What would the rules be like, and how many referees would it take to make sure that the rules were followed? As it happens, our genomes consist of networks of roughly 25,000 interacting genes, and these networks are obviously very stable and resilient to changed conditions. Out of billions of cells, not a single one falls into chaos. How can order be maintained? A question that scientists have been pondering since the 1960s may now have been answered by theoretical physicists at Lund University, Sweden.



In the most recent issue of the Proceedings of the National Academy of Sciences USA, professor Carsten Peterson and his collaborators Björn Samuelsson and Carl Troein demonstrate how this is possible. The American physician and scientist Stuart Kauffman – a pioneer in the field, who formulated and attempted to solve the problem as early as 1967 – is their co-author.

At any given time, each of the 25,000 genes in a cell may or may not be producing a protein – each gene is ’on’ or ’off’, to use language from the world of computers. A gene can affect other genes, turning them ’on’ or ’off’. A simple case is that two genes are controlling a third gene. To activate this third gene, both the controlling genes might need to be active, or maybe only one or the other.


“In such a simple subsystem, sixteen different rules are possible in the interaction between the genes, and a large number of different solutions can emerge for the entire network,” says professor Peterson. It was systems like this that Dr. Kauffman started working with; he assumed that the different solutions corresponded to different cell types. This would also explain how the DNA can be the same in all types of cells. Unfortunately, real systems are vastly more complicated. More than two genes may be involved in activating a single gene. In the case of three controlling genes, there are already 256 different rules. And in a system of 25 genes, the number of possibilities is greater than the number of atoms in the known universe...

To find those solutions that would produce stable systems, Peterson and his collaborators have primarily used literature knowledge from the foremost guinea pig of genetics: the fruit fly. More is known about the details of the genetic network here than in humans.
“In the fruit fly one can find almost 200 rules that are canalyzing, and this property is most likely general and applicable to genetic networks in other organisms,” Carsten Peterson notes. “With ’canalyzing’ we mean that there is a controlling gene that decides the value of the gene it activates by being either on or off. In that case, other controlling genes don’t have any effect on the activated gene. It doesn’t matter whether they are on or off.

With canalyzing rules, it turns out that the networks become stable regardless of the number of controlling genes, the size of the networks and the initial state of the system.” It might be added that when Stuart Kauffman first started working on this problem, he was using punch cards. Now that the problem has been solved, it was not thanks to simulations on a powerful computer – it has been sufficient with observations, logical thinking and mathematical labor.

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>