Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain reliever may help treat life-threatening childhood disease

30.11.2004


A drug withdrawn from pharmacy shelves over 20 years ago may point the way to a new treatment for spinal muscular atrophy, or SMA, a muscle-wasting and often life-threatening childhood disease.



A new study suggests that the drug, called indoprofen, increases the production of a protein that is key to the survival of the nerve cells affected by the disease. Indoprofen was taken off the market in the early 1980s due to reports of serious gastrointestinal reactions as well as reports that the drug caused cancer in laboratory rats. Researchers are now looking into ways to modify the drug to make it less toxic to humans, said Arthur Burghes, a study co-author and a professor of molecular and cellular biochemistry at Ohio State University.

While SMA strikes only about one in 6,000 newborn Americans each year, it is the leading genetic cause of infant and toddler death in the United States as well as Western Europe. There is no cure or standard treatment, and children with the most severe form of the disease usually die before their second birthday. Motor neurons – nerve cells that send signals from the spinal cord to muscles throughout the body – rapidly deteriorate in SMA due to reduced levels of survival motor neuron (SMN) protein. Patients with the disease lack SMN1, a gene that produces SMN protein. For reasons that aren’t clear, this protein deficiency affects only motor neurons of the spinal cord – all other cells in the body function normally.


SMA patients do have one or more copies of SMN2, a gene that produces low levels of SMN protein. But these levels aren’t high enough to stop SMA’s deleterious effects on spinal motor neurons. Laboratory experiments using indoprofen to treat human fibroblast cells resulted in a 13 percent increase in SMN protein production in the cells. "This increase is sort of like giving an additional SMN2 gene to a patient – it would give the patient about 13 to 15 percent more protein," Burghes said. "While this additional protection wouldn’t cure the disease, it could lessen the severity of symptoms."

The study appears in the current issue of the journal Chemistry and Biology. Burghes worked with a team of scientists from Columbia University, the National Institutes of Health, the University of Massachusetts Medical School and a hospital in the United Kingdom. Brent Stockwell, the study’s principal investigator, is a researcher at Columbia University.

The researchers screened 47,000 chemical compounds to find ones that would boost SMN2’s protein production capabilities. Included in this group were a number of non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Out of all the compounds screened, indoprofen was the only drug – including the only NSAID – that showed an effect. Researchers used human fibroblasts taken from patients with Type I SMA, the most severe form of the disease. While SMA doesn’t harm fibroblasts, the cells still lack the SMN1 gene. "We can’t extract spinal neurons from humans, and the fibroblasts gave us a pretty good idea of indoprofen’s affect on human cells," Burghes said.

SMN protein production increased by 13 percent in the treated fibroblasts.

"Theoretically, children with less severe forms of SMA may get even more protection than this, since these children have more copies of the SMN2 gene than do children with the most severe form," Burghes said.

The researchers also tested indoprofen’s effects on mice pregnant with SMA offspring. "What is still unclear is at what point motor neurons most need the additional SMN protein," Burghes said. "Should we give treatment once a patient has symptoms, before the symptoms start, or even in utero? We just don’t know." Even so, indoprofen still gives researchers a good starting point for creating drugs to help treat SMA, he said. "The next step is to work on modifying the drug to make it an optimal compound for treating SMA, and to try to find other compounds that work in a similar way," Burghes said. "Chemical modification of indoprofen will hopefully help us create a better drug."

This work was funded by grants from Andrew’s Buddies, Families of SMA and the National Institutes of Health. Work in Burghes’ laboratory has also been supported by the Miracle for Madison fund at Ohio State.

Arthur Burghes | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>