Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new species of amyloid peptide

26.11.2004


Scientists have identified a new, longer species of amyloid â-peptide that has the potential to be a new target for the treatment of Alzheimer’s disease. The research appears as the "Paper of the Week" in the December 3 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.



One of the characteristic features of Alzheimer’s disease is the deposition of amyloid â-peptides in the brain. These amyloid â-peptides are derived from a large amyloid precursor protein through a series of cleavage events. Under normal conditions, cleavage first by á-secretase and then by ã-secretase results in a soluble ectodomain, a short peptide called p3, and an intracellular C-terminal domain, none of which are amyloidogenic. Alternatively, amyloid precursor protein can be processed by the enzymes â-secretase and ã-secretase to produce a soluble ectodomain along with the full-length amyloidogenic amyloid â-peptide and the intracellular C-terminal domain.

Although amyloid precursor protein is found in many cells, its normal biological function is not well understood. "It has been suggested that amyloid precursor protein may function as a receptor or growth factor precursor," notes Dr. Xuemin Xu of The University of Tennessee. "Recent studies also suggest that the intracellular C-terminal domain of the amyloid precursor protein may function as a transcription factor."


While the exact pathogenic role of amyloid â-peptide in Alzheimer’s disease has not yet been definitely established, accumulating evidence supports the hypothesis that amyloid â-peptide production and deposition in the brain could be a causative event in Alzheimer’s disease. Dr. Xu explains that the literature indicates amyloid â-peptide itself could be toxic to synapses and the accumulation of amyloid â-peptide could initiate a series of events contributing to cell death, including activation of cell death programs, oxidation of lipids and disruption of cell membranes, an inflammatory response, and possibly neurofibrillary tangle formation, which is a close correlate of neuron loss. Therefore, the problem of production, accumulation, and clearance of amyloid â-peptide in the brain emerges as one of the possible rational approaches for the treatment of Alzheimer’s disease.

Generally, amyloid â-peptides are around 39-43 amino acid long. Studies have shown that the longer amyloid â-peptides are more amyloidogenic and more pathogenic than the shorter ones. Now, Dr. Xu and his colleagues have discovered a new species of amyloid â-peptide that is 46 amino acids long, called Aâ46. This Aâ46 peptide is produced by ã-secretase at a novel cleavage site, the æ-site. This site also happens to be the site of a mutation found in early-onset familial Alzheimer’s disease called the APP717 or London mutation.

"Another well characterized Alzheimer’s disease-linked amyloid precursor protein mutation, the Swedish mutation, also occurs at a major cleavage site, the â-cleavage site at the N-terminus of amyloid â-peptide," adds Dr. Xu. "Studies have shown that Swedish mutation at the â-cleavage site makes the amyloid precursor protein more susceptible to â-secretase activity. The finding that æ-cleavage site is the APP717 mutation site suggests that the APP717 mutation may cause enhanced production of the longer amyloid â-peptide, Aâ42, by influencing the æ-cleavage. Therefore, this finding may open a new avenue for studying the mechanism by which APP717 mutations cause enhanced production of the longer amyloid â-peptide."

Dr. Xu and his colleagues also discovered that ã-secretase cleavage at the new æ-site is specifically inhibited by compounds known as transition state analogs, but is less affected by compounds known as non-transition state inhibitors. Specifically, some of these inhibitors, which were previously known to inhibit the formation of secreted amyloid â-peptides, were found to cause an intracellular accumulation of an even longer amyloid â-peptide species, Aâ46. "These novel findings provide information important for the strategy of prevention and treatment of Alzheimer’s disease, aimed at the design of ã-secretase inhibitors," concludes Dr. Xu. "Since amyloid â-peptide is produced by the sequential actions of â- and ã-secretases, inhibition of these secretases to reduce the production of amyloid â-peptide is believed to be one of the more promising avenues of treatment of the disease. To date, more than one dozen ã-secretase inhibitors have been developed or identified."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>