Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new species of amyloid peptide

26.11.2004


Scientists have identified a new, longer species of amyloid â-peptide that has the potential to be a new target for the treatment of Alzheimer’s disease. The research appears as the "Paper of the Week" in the December 3 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.



One of the characteristic features of Alzheimer’s disease is the deposition of amyloid â-peptides in the brain. These amyloid â-peptides are derived from a large amyloid precursor protein through a series of cleavage events. Under normal conditions, cleavage first by á-secretase and then by ã-secretase results in a soluble ectodomain, a short peptide called p3, and an intracellular C-terminal domain, none of which are amyloidogenic. Alternatively, amyloid precursor protein can be processed by the enzymes â-secretase and ã-secretase to produce a soluble ectodomain along with the full-length amyloidogenic amyloid â-peptide and the intracellular C-terminal domain.

Although amyloid precursor protein is found in many cells, its normal biological function is not well understood. "It has been suggested that amyloid precursor protein may function as a receptor or growth factor precursor," notes Dr. Xuemin Xu of The University of Tennessee. "Recent studies also suggest that the intracellular C-terminal domain of the amyloid precursor protein may function as a transcription factor."


While the exact pathogenic role of amyloid â-peptide in Alzheimer’s disease has not yet been definitely established, accumulating evidence supports the hypothesis that amyloid â-peptide production and deposition in the brain could be a causative event in Alzheimer’s disease. Dr. Xu explains that the literature indicates amyloid â-peptide itself could be toxic to synapses and the accumulation of amyloid â-peptide could initiate a series of events contributing to cell death, including activation of cell death programs, oxidation of lipids and disruption of cell membranes, an inflammatory response, and possibly neurofibrillary tangle formation, which is a close correlate of neuron loss. Therefore, the problem of production, accumulation, and clearance of amyloid â-peptide in the brain emerges as one of the possible rational approaches for the treatment of Alzheimer’s disease.

Generally, amyloid â-peptides are around 39-43 amino acid long. Studies have shown that the longer amyloid â-peptides are more amyloidogenic and more pathogenic than the shorter ones. Now, Dr. Xu and his colleagues have discovered a new species of amyloid â-peptide that is 46 amino acids long, called Aâ46. This Aâ46 peptide is produced by ã-secretase at a novel cleavage site, the æ-site. This site also happens to be the site of a mutation found in early-onset familial Alzheimer’s disease called the APP717 or London mutation.

"Another well characterized Alzheimer’s disease-linked amyloid precursor protein mutation, the Swedish mutation, also occurs at a major cleavage site, the â-cleavage site at the N-terminus of amyloid â-peptide," adds Dr. Xu. "Studies have shown that Swedish mutation at the â-cleavage site makes the amyloid precursor protein more susceptible to â-secretase activity. The finding that æ-cleavage site is the APP717 mutation site suggests that the APP717 mutation may cause enhanced production of the longer amyloid â-peptide, Aâ42, by influencing the æ-cleavage. Therefore, this finding may open a new avenue for studying the mechanism by which APP717 mutations cause enhanced production of the longer amyloid â-peptide."

Dr. Xu and his colleagues also discovered that ã-secretase cleavage at the new æ-site is specifically inhibited by compounds known as transition state analogs, but is less affected by compounds known as non-transition state inhibitors. Specifically, some of these inhibitors, which were previously known to inhibit the formation of secreted amyloid â-peptides, were found to cause an intracellular accumulation of an even longer amyloid â-peptide species, Aâ46. "These novel findings provide information important for the strategy of prevention and treatment of Alzheimer’s disease, aimed at the design of ã-secretase inhibitors," concludes Dr. Xu. "Since amyloid â-peptide is produced by the sequential actions of â- and ã-secretases, inhibition of these secretases to reduce the production of amyloid â-peptide is believed to be one of the more promising avenues of treatment of the disease. To date, more than one dozen ã-secretase inhibitors have been developed or identified."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>