Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart protein could be used to repair damage caused by heart attack

25.11.2004


A protein that the heart produces during its development could be redeployed after a heart attack to help the organ repair itself, researchers at UT Southwestern Medical Center at Dallas have found.



The mouse-study findings could eventually lead to new treatments for heart disease in humans and could even change the way healthcare providers respond to people suffering from heart attacks. The research appears today’s edition of Nature and is available online. "If the protein has a similar effect in humans as it does in mice, the impact by sheer volume is great – nearly 1 million people have heart attacks every year just in the United States," said Dr. Deepak Srivastava, professor of molecular biology and pediatrics and the study’s senior author. "The delivery is very simple and avoids many of the problems of using stem cells."

While more common in adults, heart disease is the leading noninfectious cause of death in children younger than one year. Heart disease in children is usually caused by developmental abnormalities. The protein, Thymosin beta-4, is expressed by embryos during the heart’s development. It encourages the migration of heart cells and affects those cells’ survivability. The new findings show that the protein prevents cell death after an experimentally-induced heart attack and limits the degree of scar tissue formation. Thymosin beta-4 is already used in clinical trials to promote wound healing on the skin. As a result, the protein could enter clinical trials for treating the heart in the very near future, said Dr. Srivastava, co-director of the March of Dimes Birth Defects Center at UT Southwestern.


During their study, UT Southwestern researchers discovered that Thymosin beta-4 works in conjunction with two other proteins to promote survival and migration of heart muscle cells by activating the protein Akt/Protein Kinase B. Akt/PKB, when active, promotes cell survival.

After studying the activity of cells in culture, researchers created a mouse model by tying off the coronary artery of 58 adult mice, simulating a heart attack. Half of the mice were given Thymosin beta-4 systemically, directly into the heart, or through both routes immediately after the ligation. The other half were given control injections of saline immediately after the artery was tied off. Researchers found that Thymosin beta-4 caused fewer cells in the affected part of the heart to die, resulting in improved function even several weeks after the heart attack. Researchers now believe that Thymosin beta-4 changes cell metabolism to create stronger heart muscle cells that can resist the low oxygen conditions after a heart attack.

The next step, Dr. Srivastava said, is to determine the most effective dose, the optimal time to administer Thymosin beta-4 and how long after an attack the protein can be given to be effective.

Other UT Southwestern researchers involved were Dr. Ildiko Bock-Marquette, a postdoctoral researcher in pediatrics and co-lead author; Ankur Saxena, graduate student research assistant in the genetics and development program and co-lead author; Dr. J. Michael DiMaio, assistant professor of cardiovascular and thoracic surgery; Michael White, a research assistant in cardiovascular and thoracic surgery; and Glenn Adams IV, a research technician in cardiovascular and thoracic surgery.

The National Heart, Lung and Blood Institute of the National Institutes of Health, the March of Dimes Birth Defects Foundation, the American Heart Association and the Donald W. Reynolds Clinical Cardiovascular Research Center funded the study.

Staishy Bostick Siem | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New contents: Neuronal Parkinson inclusions are different than expected
26.06.2019 | Universität Basel

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>