Peripheral timekeeping: Mammalian cells outside the brain have their own circadian clocks

Researchers have discovered that individual fibroblast cells contain independent, self-sustaining circadian (ca. 24 hr) clocks. Circadian clocks are important for synchronizing many physiological and behavioral processes to the day/night cycle.

For decades it has been known that a tiny cluster of brain cells known as the suprachiasmatic nucleus (SCN) is required for expression of circadian rhythms in mammals. When clock genes were identified in the late ’90s, they were found to be expressed rhythmically not only in SCN but also in many other tissues. Some of these studies used the firefly luciferase gene, introduced into cells with regulatory elements from a clock gene, so that cell cultures emitted light with a circadian rhythm. However, peripheral tissue rhythms tended diminish after a few cycles in culture, suggesting that they might depend on the central nervous system’s SCN to drive them.

In the new work, performed by researchers at The Scripps Research Institute and Northwestern University, Dr. David Welsh and colleagues used bioluminescence imaging to monitor circadian rhythms of clock gene expression from individual rat or mouse fibroblasts. Robust rhythms of single cells persisted without diminishing for at least 1–2 weeks in culture. Cells were partially synchronized by medium change at the start of an experiment, but because of different circadian periods drifted out of phase after several days, leading the ensemble rhythm to diminish. Thus, even cells outside the brain contain bona fide circadian clocks.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.cell.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors