Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Manchester uses crystals to help battle deadly diseases

23.11.2004


A groundbreaking technique developed at The University of Manchester, which uses crystals to map ‘invisible’ parts of molecules, is set to revolutionise drug discovery.



The technique, which involves sending beams of neutrons through crystals at freezing temperatures, just a few degrees above ’absolute zero’, will for the first time allow scientists to see complete structures of protein molecules, right down to the last atom.

The problem faced by scientists using current methods is the fact that it is not possible to detect every atom in a protein’s molecular structure, and the structures therefore are incomplete – making drug design more difficult.


Professor John R. Helliwell, Professor of Structural Chemistry, who led the research, said: “This has raised the stakes in the world of drug discovery. This methodology will make research in the field more powerful, more effective and more efficient.”

The breakthrough allows the molecular structures of proteins, the chemical catalysts in the body, to be studied in complete detail. In fact, experiments at the University have shown that the number of visible atoms in a molecule doubled when using the technique, compared to techniques used today.

Protein Crystallography is an important tool used to determine the three-dimensional structures of proteins. Once a pharmaceutical company has this information, it is able to tailor drugs to target specific proteins, eg interfering with the function of such proteins in infectious agents like tuberculosis - enabling the production of more effective medicines.

‘Ultra-Cold Neutron Protein Crystallography’ improves on current methods by probing protein structures with neutrons at temperatures of 15K (-258 degrees C), dramatically increasing the number of visible atoms. The process especially reveals the hydrogen atoms, which hold the key to many chemical reactions, and because of their low mass, are rarely revealed by current methods like X-Ray Crystallography even if carried out at freezing temperatures.

Professor Helliwell added: “As well as the above advantages this makes other classes of experiments on proteins feasible. In particular, the comparison of protein structures at ultra-cold versus room temperature allows the details of atomic vibrations to be separated from structural disorders.”

“Another benefit to research that now becomes possible is that chemical reactions can be set running directly in the crystal and then freeze-trapped so as to probe the proteins in time with the neutron beam whilst the protein is actually in its functional state.”

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>