Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers use human embryonic stem cells to aid spinal cord injury repair

22.11.2004


Discovery shows stem cell-derived ‘insulation’ cells growing and functioning in a living system



For the first time, researchers have used human embryonic stem cells to create new insulating tissue for nerve fibers in a live animal model – a finding that has potentially important implications for treatment of spinal cord injury and multiple sclerosis.

Researchers at the UC Irvine Reeve-Irvine Research Center used human embryonic stem cells to create cells called oligodendrocytes, which are the building blocks of the myelin tissue that wraps around and insulates nerve fibers. This tissue is critical for maintenance of proper nerve signaling in the central nervous system, and, when it is stripped away through injury or disease, sensory and motor deficiencies and, in some cases, paralysis result.


In this study, neurologist Hans Keirstead and colleagues at UCI and the Geron Corporation devised a novel technique that allows human embryonic stem cells to differentiate into high-purity, early-stage oligodendrocyte cells. The researchers then injected these cells into the spinal cords of mice genetically engineered to have no myelin tissue.

After transplantation into mice, the early-stage cells formed into full-grown oligodendrocyte cells and migrated to appropriate neuronal sites within the spinal cord. More importantly, the researchers discovered the oligodendrocyte cells forming patches of myelin’s basic protein, and they observed compact myelin tissue wrapping around neurons in the spinal cord. These studies demonstrated that the oligodendrocytes derived from human embryonic stem cells can function in a living system. Results of this study are published online in the peer-reviewed journal Glia. “These results are extremely exciting and show great promise,” Keirstead said. “What we plan to do next is see how these cells improve sensory and motor function, and hopefully it will lead to further tests with people who suffer from these debilitating illnesses and injuries.”

Gabriel I. Nistor and Minodora O. Totoiu from UCI collaborated with Nadia Haque and Melissa K. Carpenter of the Geron Corporation on the study, which was supported by Geron, UC Discovery, Research for Cure and the Reeve-Irvine Research Center. Geron provided the human embryonic stem cells used in this study. In previous studies, Keirstead and colleagues have identified how the body’s immune system attacks and destroys myelin tissue during spinal cord injury or disease states. They’ve also shown that, when treated with antibodies to block immune system response, myelin is capable of regenerating, which ultimately restores sensory and motor activity.

The Reeve-Irvine Research Center was established to study how injuries and diseases traumatize the spinal cord and result in paralysis or other loss of neurologic function, with the goal of finding cures. It also facilitates the coordination and cooperation of scientists around the world seeking cures for paraplegia, quadriplegia and other diseases impacting neurological function. Named in honor of Christopher Reeve, the center is part of the UCI College of Medicine.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>