Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore scientists shape crystals with biomolecules

19.11.2004


Using biominerals as an inspiration, Livermore physicist Jim De Yoreo and his LLNL research team have determined a key factor in how to manipulate the shapes of crystals.



In a series of experiments using an atomic force microscope, De Yoreo’s team and that of Patricia Dove, a geoscientist from Virginia Polytechnic Institute and State University, used four different biomolecules to study their effects on the dynamics of atomic steps during crystallization. They set out to test a two-decade-old model of crystal-shape modification believed to be at odds with classic theories of crystal growth. Their results appear in the Nov. 19 issue of the journal, Science.

The main focus of the work was on the mineral calcite, which has more than 300 identified crystal forms that can combine to produce at least a thousand different crystal variations. Crystals can form a thousand different shapes by combining the basic forms of the positive rhombohedron (a prism with six faces, each a rhombus), negative rhombohedron, steeply, moderately and slightly inclined rhombohedrons, various scalahedrons, prism and pinacoid. De Yoreo and Dove first determined that when combined with magnesium, the corners formed by the intersection of atomic steps flatten and roughen, leading to flattening of the crystal’s corners and elongation and roughening of the crystal shape.


When combined with acidic amino acids, both the step and crystal shapes changed to reflect the handedness (whether the molecule was right-handed or left-handed) of the amino acids. Molecular simulations showed that the step edges provided the most favorable binding environment for the acids.

When citrate, a naturally occurring inhibitor and therapeutic agent, was used in the experiment, the change in crystal shape again mimicked the change in step shape, and molecular models also identified the steps as the preferred interaction sites.

In the last experiment, calcite crystals were combined with a protein extracted from abalone nacre, a pearly substance that lines the interior of many shells, and is most perfect in the mother-of-pearl. The changes were step-specific and directly determined the shape of the macroscopic crystals.

"Although crystal growth modifications are diverse, the source of shape changes in these studies is clear," De Yoreo said. "Crystal shape is controlled by step-specific interactions between growth modifiers and individual step edges on pre-existing crystal faces. Through this research, our team has shown that the classic theories of growth merge smoothly with the models proposed to explain shape modification."

Anne M. Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>