Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists uncork fountain of youth for HIV-fighting cells

15.11.2004


Protein may help immune system fend off virus



UCLA scientists have shown that a protein called telomerase prevents the premature aging of the immune cells that fight HIV, enabling the cells to divide indefinitely and prolong their defense against infection. Published Nov. 15 in the Journal of Immunology, the research suggests a future therapy for boosting the weakened immune systems of HIV-positive people.

Every cell contains a tiny cellular clock called a telomere, which shortens each time the cell splits in two. Located at the end of the cell’s chromosome, the telomere limits the number of times a cell can divide. "Immune cells that fight HIV are under constant strain to divide in order to continue performing their protective functions. This massive amount of division shortens these cells’ telomeres prematurely," explained Dr. Rita Effros, Plott Chair in Gerontology and professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA. "So the telomeres of a 40-year-old person infected with HIV resemble those of a healthy 90-year-old person."


Most scientists agree that telomeres evolved to avert the rampant cell growth that often leads to cancer. Yet many cancers continue growing because they undergo genetic changes and start to produce telomerase, which regenerates their cells’ telomeres.

Effros and first author Mirabelle Dagarag, Ph.D., hypothesized that harnessing telomerase’s power over telomeres may provide a potent weapon in helping the AIDS patient’s exhausted immune system defend itself against HIV. The researchers extracted immune cells from the blood of HIV-infected persons and tested what would happen if telomerase remained permanently switched on in the cell. "By exploiting telomerase’s growth influence on telomeres, we thought we might be able to keep the immune cells youthful and active as they replicated under attack," said Dagarag, a postgraduate researcher. "We used gene therapy to boost the immune cell’s telomerase and then exposed the cell to HIV."

What Dagarag and Effros saw delighted them.

"We found that the immune cells could divide endlessly," said Effros, a member of the UCLA AIDS Institute. "They grew at a normal rate and didn’t show any chromosomal abnormalities that might lead to cancer." "We also saw that telomerase stabilized the telomere length," added Dagarag. "The telomere didn’t shorten each time the cell divided, which left the cell able to vigorously battle HIV much longer."

The UCLA work is the first to prove that maintaining telomerase activity in immune cells from HIV-infected persons prevents telomeres from shortening. "This is the first step toward developing other telomerase-based strategies for controlling HIV disease," said Dagarag. "Increasing the amount of telomerase in certain immune cells may one day hold the key to treating AIDS." "To battle HIV infection effectively, we must strengthen the human immune system -- not just suppress the virus as current drugs do," said Effros. "We need a two-pronged approach to attack the disease from both sides of the medical equation."

Effros and the Geron Corporation, which collaborated on this study, are also testing several non-genetic methods of activating telomerase as potential treatments for persons infected with HIV.

The UCLA team’s approach could provide the foundation for immunotherapy as a treatment for HIV and related diseases that rely on lasting protection by the same immune cells. These include cancer and latent cytomegalovirus, a viral infection that often strikes organ-transplant patients and persons with AIDS.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Scientists discover new 'architecture' in corn
21.01.2019 | Louisiana State University

nachricht Nuclear actin filaments determine T helper cell function
21.01.2019 | Universitätsklinikum Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>