Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists advocate genomic sequencing of ’living fossil’

15.11.2004


A team of Stanford University researchers led by Richard Myers, Ph.D., in collaboration with Chris Amemiya, Ph.D., of the Benaroya Research Institute in Seattle, campaign in the December issue of Genome Research for deciphering the genetic code of a "living fossil" fish, the coelacanth.



The genomic sequence of this large "hollow-spined" fish, which populates deep-sea volcanic caves, could hold valuable clues for biologists studying the evolution of vertebrate species. Coelacanths were believed to have been extinct until a live specimen was discovered in 1938 off the coast of South Africa. Both of the known coelacanth species that survive today, Latimeria chalumnae and Latimeria menadoensis, are anatomically similar to their fossil relatives. Furthermore, coelacanths have exhibited little morphological change since their emergence during the Devonian period approximately 360 million years ago.

To date, complete genomic sequences for more than 200 organisms have been obtained, and hundreds more are currently in progress (www.genomesonline.org). These efforts will enable scientists to perform detailed comparisons of the complete genetic codes from multiple species, identifying the sequence changes that contributed to evolutionary adaptation and speciation. Although a wide assortment of species have been chosen for sequencing, ranging from lampreys to armadillos (www.genome.gov/12511858), Myers observed: "We’re missing an organism that could really shed light on the emergence of land vertebrates. We don’t know what genomic changes accompanied the transition from water to land, and a coelacanth genome could help identify those events."


The coelacanth is one of only two living taxa to occupy the critical, highly informative phylogenetic position between ray-finned fishes and tetrapods. Fleshy, lobed fins, which are one of the defining characteristics of coelacanths, are thought to represent an intermediate evolutionary stage in the transformation of fins to limbs. Lobe-finned relatives of the coelacanth underwent morphological alterations that enabled them to emerge from the sea and inhabit terrestrial environments. Both the coelacanth and the lungfish – the only two living lobe-finned fishes – are related to important evolutionary progenitors of land vertebrates. However, the lungfish genome is very large (more than 100 billion nucleotides in length), making it technically impractical to sequence with currently available technology. The coelacanth genome, on the other hand, is estimated to be smaller than that of human or mouse, making it feasible for whole-genome sequencing.

Jim Noonan, Ph.D., a former graduate student on Myers’ team who carried out much of the work described in the Genome Research article, focused on a small but highly informative genomic segment from the Indonesian coelacanth (Latimeria menadoensis) called the protocadherin gene cluster. Encoding for proteins involved in the development and maturation of neurons and synapses in the brain, protocadherin clusters are not present in invertebrates, such as fruit fly (Drosophila melanogaster) or roundworm (Caenorhabditis elegans), but they are found in more evolutionarily complex species, including all vertebrates. Protocadherin gene clusters are composed of a tandem array of multiple gene copies, making them particularly prone to aberrant recombination and thus, to duplication and homogenization. Because this region appears so vulnerable to evolutionary change, Noonan, Amemiya and Myers predicted that the sequence of the coelacanth protocadherin cluster would be a good indicator of the utility of the whole coelacanth genome sequence for inferring vertebrate phylogeny.

Jane Grimwood, Jeremy Schmutz and Mark Dickson at the Stanford Human Genome Center generated more than 600,000 nucleotides of coelacanth genomic sequence spanning the protocadherin gene cluster. Using this sequence, Noonan determined that the structure of the coelacanth cluster was very similar to the orthologous human cluster. The coelacanth genome has 49 protocadherin cluster genes organized into the same three subclusters (alpha, beta, and gamma) as the 54 protocadherin cluster genes in human. In contrast, the zebrafish (Danio rerio) genome contains at least 97 protocadherin genes organized into two distinct clusters, resulting from a whole-genome duplication event.

A major discovery stemming from this work is that the coelacanth genome appears to be evolving slowly relative to land vertebrates and the teleost fishes. This makes the coelacanth genome a better reference for comparative sequence analyses involving land vertebrates than teleost genomes, which are commonly used for such studies but are highly derived due to a whole-genome duplication event. For these reasons, Myers and colleagues argue that the complete genomic sequence of the coelacanth would be valuable for identifying important genome modifications that occurred during the evolution of tetrapod species.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Lying in a foreign language is easier

19.07.2018 | Social Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>