Next Generation pH Measurement Removes the Need for Calibration

The measurement of pH is one of the most common analytical measurements used the world over in applications from process control in the food industry, to research in the pharmaceutical industry, through to effluent monitoring in the environmental sector. In 2002, the total pH measurement instrumentation market, including replacement sensors revenue, was estimated to be on the order of $500m.

The technology currently used for measuring pH is more than seven decades old and suffers from serious operational flaws. Specifically conventional glass electrodes: need constant re-calibration by suitably trained staff using expensive buffers, need careful wet storage and all too frequently break. More recent developments such as solid-state sensors and optical dye based systems all suffer serious limitations including limited pH measurement ranges and low sensitivity.

Researchers at the University of Oxford have developed a complete range of new pH sensors which are cheap and robust to manufacture, can be used over a broad pH range, are sensitive to small changes in pH, can be miniaturised and can be used at high temperatures and pressures; but, most important of all, the new sensors require no calibration.

Media Contact

Kim Bruty alfa

More Information:

http://www.isis.ox.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors