Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated scans let scientists track drugs’ broad effects on cells

12.11.2004


’Cytological profiling’ could streamline early phases of drug discovery

Bringing an unprecedented level of automation to microscopy, scientists at Harvard University have developed a powerful new method of visualizing drugs’ multifaceted impact on cells. The technique, which could eventually become a standard tool for drug discovery, is described this week in the journal Science.

Steven J. Altschuler and Lani F. Wu, mathematicians skilled in developing models to find meaningful patterns among mountains of data, worked with Timothy J. Mitchison of Harvard Medical School to automate microscopic imaging of drug-treated cells and recast the resulting scans in a computer-friendly format. The result: a method dubbed "cytological profiling" that trains computers to recognize cell status and health from cellular images, virtually automating microscopic scanning for various types of abnormalities.



"The resulting profiles of cellular changes wrought by drugs at various dosages provide information on drug mechanism that is highly relevant to understanding the specificity and toxicity of drugs," says Altschuler, research fellow at the Bauer Center for Genomics Research in Harvard’s Faculty of Arts and Sciences. "The information gleaned includes many key indicators of drugs’ potential usefulness and limitations as medicines."

"We actually started out on this project thinking that this could be a good research tool," adds Wu, research fellow at the Bauer Center. "We’ve now discovered, to our surprise, that it may also prove a powerful tool for drug discovery."

High-throughput cytological profiling lets scientists test numerous variables at once, wringing countless discrete cellular measurements from a single experiment. Faced with scores of drugs holding the potential to combat a given disease, researchers could hone in on the most promising drugs in a fraction of the time of current methods.

"This technique employs ’guilt by association’ -- if two drugs’ cytological profiles look similar, they probably work through similar mechanisms," Altschuler says. "It’s particularly useful for understanding drug action because it allows us to look at many concentrations of a drug, which is essential for comparing two drugs that may have different potency but act on the same target."

Since they are hardy and flourish even outside the body, the Harvard team used human cancer cells. They placed the cells in 384 minuscule wells in a plastic dish, injected each well with one of 100 drugs -- both medicines and toxins -- at different concentrations, and finished off the plates with11 chemical probes for different proteins and DNA.

After 20 hours of cell growth, the researchers used automated microscopy to collect some half a million images of the treated cells, followed by approximately 5 billion individual measurements of the size, shape, and quantity of different proteins, DNA, and organelles in each. Software developed by Altschuler, Wu, and colleagues allowed them to convert this copious data into profiles of the effects of each drug, yielding distinctive red-and-green "fingerprints" for each, not unlike the color-coded data from a DNA chip.

However, unlike DNA chips that meld bountiful data into an "average" denoted by dots of color on a grid, cytological profiling preserves individual data points -- so researchers can go back and analyze fine-grain information.

"By allowing quantitative measurement of many proteins and structures in cells over many samples, and systematic comparison between samples, our method brings microscopy into the ’-omics’ era, like genomics and proteomics," says Mitchison, of Harvard Medical School’s Institute of Chemistry and Cell Biology and Department of Systems Biology. "This really allows us a much broader view of how cells are affected by a wide range of perturbations."

Cytological profiling may be especially useful, Mitchison says, for evaluating drug candidatesin areas where making a drug with a highly specific biochemical effect is difficult, such as kinase inhibitors. Future applications may include testing the response of cancer cells with different genetic profiles to a spectrum of anti-cancer drugs, which could help predict clinical responses in individual patients.
Alschuler, Wu, and Mitchison were joined in this research, sponsored by the National Cancer Institute and Howard Hughes Medical Institute, by co-authors Zachary E. Perlman and Yan Feng at Harvard Medical School and Michael D. Slack in the Bauer Center for Genomics Research.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>