Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene target found for common brain tumors in children

11.11.2004


Scientists at Johns Hopkins have linked a stem-cell gene to a portion of one of the most common childhood brain cancers, opening the door to tailored therapies that block the gene’s tumor-promoting ability.



The gene, called Notch2, whose pathway is known to be an important factor in regulating brain stem-cell growth and survival, has been studied in fruit flies for almost a century. The research team at the Johns Hopkins Pathology Department and Kimmel Cancer Center found that a protein made by the Notch2 gene promotes cancer cell growth by 27 percent in a childhood brain tumor, called medulloblastoma. Their studies, reported in the November 1 issue of Cancer Research, also revealed that children with high Notch2 gene activity fared worse in the course of their disease than those with less activity in Notch2.

The researchers report that a drug first developed for Alzheimer’s disease called DFK-167, which blocks activation of all Notch proteins, reduces growth of cancerous cells in culture by 80 percent, although unwanted side effects and dosing problems may make it a poor choice for treating human brain cancer. But the investigators are testing more potent drugs of the same class and developing new ones that block only the Notch2 pathway. No clinical trials with any drug have yet been planned, the researchers emphasize.


Scientists say that gene amplification - a process in which cells make too many copies of a gene -- is one of the most reliable indicators of a gene’s importance to cancer development. The Johns Hopkins team found Notch2 amplified in six of 40 (15 percent) medulloblastomas and other similar brain tumors. "Just like genetic mutations, amplifications are long-lasting DNA mistakes, as opposed to transient changes in the production of proteins and other gene products," says Charles Eberhart, M.D., Ph.D., assistant professor of pathology at Johns Hopkins. "Finding amplification of Notch2 is a smoking gun tying it to the development of these brain tumors," he added.

In their study, the Johns Hopkins scientists compared levels of a protein marker for Notch2 gene activity to the survival of 35 medulloblastoma patients. Of 11 patients with high levels, seven died. Of 24 patients with no detectable protein, only six died.

Standard surgery and radiation for medulloblastoma cures approximately 60 percent of children, but often results in many neurological and learning disabilities. "We’d like to develop a drug that only affects the Notch2 pathway, since blocking other members of the Notch family may actually have the opposite effect and encourage cancer growth," says Xing Fan, M.D., Ph.D., first author of the study and postgraduate fellow at Johns Hopkins.

In 25 of 30 of the medulloblastomas they studied, Eberhart’s team also found lower levels of Notch1 gene products compared to Notch2. Notch1 proteins normally provide a brake on growth of medulloblastoma cells and blocking their activation would cancel out some of the drug’s effects. "The net effect of any drug will depend on how much of each Notch1 and Notch2 is present, and since we found more Notch2, we think the scale can be tipped toward stopping the cancer," speculates Eberhart.

Close to 2,000 children are diagnosed with brain cancer annually in the United States. One in five childhood brain cancers is a medulloblastoma. The cancer originates in the back of the brain in the cerebellum. Medulloblastoma tumors often are characterized as looking like a large mass of stem cells.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>