Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Therapy: the Search for the Safe and Gentle Method

09.11.2004


Scientists from three countries study innovative DNA transport element



Treating genetic diseases by introducing functional genes into the human organism: researchers from three European countries are aiming for a breakthrough in this process, known as gene therapy, using a new methodology. The network of scientists, including the German Research Centre for Biotechnology in Braunschweig (GBF), is working to further develop a certain type of DNA element, called an episome, for this purpose. The European Union is contributing financial support for the “Epi-Vector-Programme.”

During the 1990s great promise for gene therapy emerged for the first time. At this time, bio-scientists and others from the medical profession first attempted to treat people with hereditary defects by implanting a functional version of a damaged gene into the patient’s body. The initial high hopes for this process were cruelly disappointed when several of the patients contracted cancer and died.


Professor Jürgen Bode, the work group leader at GBF, is convinced that the cause of these deaths can be found in the vectors used at the time; i.e the transport elements by which the DNA was injected into a patient’s cells. “Certain viruses that were rendered harmless were used,” notes Prof. Bode, “into whose genetic substance the desired gene was integrated.” “This,” Bode explains, “was essentially a sensible approach because viruses inject their own DNA into the cells they attack; in fact, they do this at those points where it is most convenient for their own survival. Then, they let themselves be reproduced by our own cells.” The downside is that unfortunately we have no control over the location where this occurs on our chromosomes, says Bode. If a virus invades a key genetic region of a cell it can severely inhibit the functions of genetic information. In the worst case scenario, this can lead to the breakdown and loss of genes which, in turn, can result in cancer.

The GBF and the rest of the research consortium are focusing on a new type of vector called an episome. Episomes are DNA elements that do not combine themselves in the genetic substance of the host DNA. Instead, they become anchored in a reversible manner only to certain support molecules in the nucleus of the cell – the same molecules used for stabilisation by human DNA. The necessary “DNA anchors” were identified during the Human Genome Project. “Now it is possible,” says Prof. Bode, “to head straight for the stabilisation of cell nucleus molecules.” The episomes constructed are independent DNA ring molecules which have attached themselves to a chromosome in the host cell. Their information is jointly read with that of the chromosomes and together they multiply with the chromosomes every time cell division occurs.

Researchers in the Epi-Vector-Project now want to find out if episomes are suitable for a gentler form of gene therapy. Professor Bode warns however that quick successes are not likely. “Even if this method functions, considerable groundwork would still be required before the process could be applied in the medical field.”

More about the Epi-Vector-Programme

Participants in the EU-supported research programme “Episomal Vectors for Human Gene Therapy” include seven scientific institutes from Germany, England and the Netherlands. The German project partners are the universities of Witten and Hamburg, and the GBF in Braunschweig. Coordinator of the project is the molecular biologist, Dr. Dean Jackson, in Manchester/UK.

Manfred Braun | alfa
Further information:
http://www.gbf.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>