Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful ’toolkit’ developed for functional profiling of yeast genes

05.11.2004


Because 60 percent of yeast genes have at least one clearly identifiable human counterpart, the advance, described in the Nov. 5 issue of Molecular Cell, should speed advances in understanding human gene and protein functions, as well as improve the reliability of what scientists think they know about this extremely useful microorganism. Eventually the work with yeast could reveal particular gene interactions that could become targets for therapies to fight cancers or fungal infections, say the researchers.



The toolkit, a combination of techniques developed by the Hopkins researchers and others, starts with a collection of almost 6,000 yeast strains, each missing a different gene, and allows researchers to identify genes whose coupled elimination kills the yeast. Many laboratories are already using the "single knock-out" yeast collections, but postdoctoral fellow Xuewen Pan, Ph.D., found a way to protect the genetic integrity of the collection so that repeated experiments will provide the same results, regardless of when and where the experiments are conducted.

"Everyone in the yeast community has been using their own batch of yeast mutants, but the slow-growing mutants gradually accumulate extra genetic changes so they can grow faster," says Jef Boeke, Ph.D., professor of molecular biology and genetics and director of the HighThroughput Biology (HiT) Center in Hopkins’ Institute for Basic Biomedical Sciences. "This potential for genetic impurity means that one person’s batch of yeast is no longer exactly the same as someone else’s. We went back to the original stocks of yeast mutants, in certain cases, so we know exactly what we have."


Human cells, with the exception of egg and sperm, have two copies of each gene, but yeast are content with either two copies of each gene or just one. Libraries of the almost 6,000 yeast mutants have just one copy of each gene, so there’s no back-up for a missing gene that leads to slow growth.

Pan’s mutant yeast are protected from collecting genetic impurities because he’s added a second copy of all the genes, a cloak that temporarily obscures the effects of whatever gene is missing. He then uses a laboratory trick developed by researchers at the University of Toronto to get rid of the extra set of genes at just the right time.

A second advantage of the Hopkins "toolkit," Boeke says, is that all the yeast mutants are mixed together and studied simultaneously, an advance reported a year ago in Nature Genetics by then-graduate student Siew-Loon Ooi, Boeke, and Stanford University’s Dan Shoemaker. At the end of an experiment, each mutant in the mix is identified by a genetic "barcode" -- created by Shoemaker -- embedded in its genome. The researchers then use special microarrays to find out how much of each mutant is present. An improved barcode microarray, designed by research associate Daniel Yuan, replaces the original in the new toolkit. "Much like barcodes identify your purchases at the grocery store, these genetic barcodes identify each of the yeast mutants," says Boeke. "So we can mix the mutants together, challenge them to survive removal of a particular gene, nurture the ones that make it and use microarrays to see quickly which ones are missing."

The researchers dubbed the combined technique dSLAM, for diploid-based synthetic lethality analysis on microarrays. "Diploid" reflects the second set of genes added to the yeast mutants, and "synthetic lethality" refers to genes that only kill the yeast if missing in combination. dSLAM is easier to use than the earlier version, so it’s more likely to be widely adopted by the yeast research community, Boeke says.

To test the new method, Pan and the team applied it to synthetic lethality experiments already tested by other methods. Their analysis, conducted with Forrest Spencer, Ph.D., an associate professor in the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, revealed that the new technique missed fewer of the known gene interactions and provided more consistent results than older techniques. "No technique is going to give 100 percent, so the question becomes, How many can you miss and still be happy with the results?" says Boeke. "We think our numbers are sufficient to get the big picture of how genes interact, and the technique has better potential to scale to the whole genome than other techniques."

In one set of experiments, the new technique identified 116 genes that were synthetic lethal with a gene called cin8 and confirmed their involvement. Of these genes, 73 had not been identified by other techniques. The new technique missed just 16 genes previously identified and confirmed by the older techniques.

Boeke’s goal is to use the new technique to build detailed maps of yeast genes’ interactions, an ambitious project being done with Joel Bader, Ph.D., an assistant professor of biomedical engineering in the Whiting School of Engineering at Johns Hopkins and a computational biologist in the HiT Center, among others.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>