Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researcher examines the cell’s housekeeping habits

05.11.2004


The cells of higher organisms have an internal mechanism for chewing up and recycling parts of themselves, particularly in times of stress, like starvation and disease. But nobody is quite sure yet whether this recently discovered process protects cells, or causes damage.



This process of internal house-cleaning in the cell is called autophagy – literally self-eating – and it is now considered the second form of programmed cell death (PCD). Apoptosis, the first kind of programmed cell death to be characterized, is now also known as Type I PCD.

Genes governing Type II PCD, autophagy, have been identified recently in many species, starting with baker’s yeast, and some of the environmental triggers that start the process are being found. But there is still quite a bit of science to do before autophagy can be understood as either a good thing or a bad thing. The evidence points both ways. "It’s likely to be both, depending on when it happens," said Daniel Klionsky, a research professor at the University of Michigan Life Sciences Instituteand professor of molecular cellular and developmental biology and biological chemistry.


Klionsky, who has been studying autophagy in yeast, has written a review article on the latest work in the field with post-doctoral fellow Takahiro Shintani that is featured on the cover of the Nov. 5 edition of Science magazine. Klionsky also recently edited the authoritative book on autophagy.

A cell undergoing autophagy assembles tiny capsules called vesicles that surround and chew up parts of the cellular machinery from within. Autophagic vesicles have been seen in cells undergoing programmed cell death, but the evidence is not clear yet whether they’re trying to protect the cell from apoptosis, or hastening its demise. "Autophagy is the only way to get rid of damaged parts of the cell without trashing the whole thing. So in a nerve cell, for example, you’d want autophagy to correct problems without destroying the cell."

High levels of autophagic vesicles also have been noted in some forms of degenerative muscle disease, and in degenerative nervous system diseases like Huntington’s, Parkinson’s, Alzheimer’s and ALS, (Lou Gehrig’s disease). But it’s not clear why the vesicles are accumulating. They may be building up because they aren’t being used, or it may be that the distressed cells are producing more vesicles. "Until the genes for autophagy were found in yeast, the whole field was sort of stumped," Klionsky said. Now researchers are able to identify autophagy genes in humans and other organisms, including mice, and can tinker with the regulation of the process to see how it works.

Cancer researchers have been trying to figure out how to turn apoptosis on as a way to have cancer cells kill themselves. Being able to control autophagy may prove useful as well, Klionsky said. In fact, any kind of disease where damaged parts accumulate inside the cell might benefit from being able to control autophagy, he said. "If you could turn it on at will, it could be used as a therapy," he said.

Autophagy probably works both to promote and prevent cancer. Its works as a tumor suppressor when it limits cell size and removes damaged machinery in the cell that could generate free radicals or create genetic mutations. But, paradoxically, autophagy may protect cancer cells against some cancer treatments and it might also make cancer cells live longer by recycling cellular parts in the nutrient-poor environment inside a tumor. Intriguingly, a line of laboratory mice with suppressed autophagy also appears to have a higher rate of spontaneous tumors, Klionsky said.

Autophagy helps the cell fight infection by some kinds of invading bacteria and viruses, by cleaning them out of the cell’s interior without having to discard the entire cell. As a result, some pathogens try to escape autophagy. For example, the virus that causes Herpes carries a gene that blocks autophagy. The bacteria that cause Legionnaire’s Disease actually hide inside the vesicles to reproduce.

Autophagy may even provide a clue to the mythical fountain of youth. Autophagy activity is known to decrease with aging, and experiments in which autophagy was blocked in the C. elegans nematode worm resulted in dramatically shorter life spans for the 1 millimeter creatures. Conversely, more autophagy may prolong life. This fits with findings that caloric restriction can extend the life span in rats, since near-starvation triggers more autophagy as the cells recycle parts of themselves for fuel. Sustained autophagy may also increase longevity by protecting cells against free radical damage and mutations in DNA. "This is becoming a very hot field," Klionsky said. "We have a lot of really interesting questions to explore in autophagy."

Karl Leif Bates | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Scientists discover new 'architecture' in corn
21.01.2019 | Louisiana State University

nachricht Nuclear actin filaments determine T helper cell function
21.01.2019 | Universitätsklinikum Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>