Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth Factors Confer Immortality to Sperm-generating Stem Cells

04.11.2004


Researchers at the University of Pennsylvania School of Veterinary Medicine have identified the growth factors essential to allow spermatogonial stem cells -- the continually self-renewing cells that produce sperm -- to exist in culture indefinitely. Their findings will be presented this week in the Proceedings of the National Academy of Science online Early Edition.



After being kept in culture for three months, the stem cells restored sperm production, and therefore fertility, in infertile mice. According to the researchers, this development will have profound consequences for future fertility therapies and provide a source of stem cells that will make it possible to modify genes from males before they are passed to the next generation. While the research was performed in mice, the researchers believe that it is likely applicable to other species, including humans.

"We’ve demonstrated that a central signaling process allows spermatagonial stem cells to continually renew themselves, essentially becoming immortal," said Ralph L. Brinster, a professor of reproductive physiology at Penn. "For research, this opens up a wonderfully robust diagnostic system for analyzing the function of individual genes. For medicine, it opens up a new chapter in fertility medicine."


Spermatagonial stem cells and the hematopoietic stem cells that generate new blood cells are the only types of adult stem cells that can be positively identified using functional assays. It may also be possible to convert spermatogonial stem cells to totipotent cells, capable of becoming almost any other cell type and similar to embryonic stem cells.

Whereas the female germ cell, the egg, stops dividing before birth, the spermatogonial stem cells continue to divide throughout life. According to Brinster, it is possible to modify the male germ line between generations by manipulating the spermatogonial stem cells in culture. "If each parent in a couple carries a similar defective recessive gene for a disease, for example, it should be possible in the future to harvest the male spermatogenic stem cells, correct the gene in culture and implant the stem cells back into the male to produce normal sperm," Brinster said. "The couple could then conceive a healthy child."

Likewise, the ability to culture spermatogonial stem cells indefinitely allows for the possibility to create sperm in vitro, that is, without implanting the stem cells in a recipient male. The technology could be useful for correcting some types of infertility in which the testicular environment is defective. Hiroshi Kubota, a research assistant professor of cell biology at the Penn Veterinary school, developed the serum-free culture system that enabled him, along with Brinster and researcher Mary R. Avabock, to discover the essential ingredients that will sustain these cells. A step-by-step additive process allowed them to determine that a single growth factor, GDNF, was vital for promoting a signal-pathway that allowed the cells to multiply in culture.

GDNF, the glial cell line-derived neurotrophic factor, was originally identified as a survival factor for neurons in the brain. GDNF was also found to be excreted by the Sertoli cells that surround and support the spermatogonial stem cells in the testes. Once added to the culture, GDNF caused the stem cells to form dense clusters and proliferate continuously.

The Penn researchers then used a GFP marker gene in the cultured stem cells to identify the cells before transplanting them back into infertile mice. These mice then produced offspring that demonstrated the success of the culture system, thanks to the expression of the GFP gene that made the mice glow green under ultraviolet light. "The identification of the exogenous factors that allow these stem cells to proliferate in culture establishes the foundation to study the basic biology of spermatogonial stem cells," Kubota said.

Funding for the research came from the National Institute of Child Health and Human Development of the National Institutes of Health, the Commonwealth and General Assembly of Pennsylvania and the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>