Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bristol scientists find key to unlock body’s own cancer defence

02.11.2004


Scientists at Bristol University have found that a protein present in normal body tissues can prevent tumour growth.



A team led by Dr Dave Bates, British Heart Foundation Lecturer, and Dr Steve Harper, Senior Research Fellow in the Microvascular Research Laboratories, in the Department of Physiology at Bristol University, have discovered that a type of vascular endothelial growth factor (VEGF) found in normal tissue, including blood, can prevent cancers from growing. The research findings will be published in the world’s most prestigious scientific cancer journal, ’Cancer Research’, next week [1 November 2004].

The growth of any cancer depends on its ability to maintain a blood supply that will deliver nutrients. For a cancer to grow from the size of a pinhead to that of a golf-ball, the blood supply of the tumour has to grow with the expansion of the tumour itself. Most forms of VEGF help this blood vessel growth. The new form of VEGF, VEGF165b, which was discovered by the same team in 2002, inhibits the growth of new blood vessels required for tumours to grow above one millimetre.


They have also found that this form of VEGF is generally found in many normal parts of the body, including the prostate, but not in prostate cancer, and have established how this form of VEGF works on blood vessels.

The identification of how this new form of VEGF works, and its effects on tumours, means that it could be possible to prevent tumour growth by starving the tumour using the body’s own anti-cancer agent, VEGF165b. The advantage of using VEGF165b over established compounds to treat cancer is that VEGF165b is a natural protein produced by the body under normal circumstances. Many new cancer therapies are based on starving the tumour of nutrients by attacking the tumour blood supply rather than the cancer cells. Blocking VEGF using antibodies has recently been shown to be effective in large-scale trials in colorectal cancer in the United States.

New blood vessel growth is also necessary for many normal body functions. These include the development of the embryo and, in adults, wound healing, the development of the placenta in pregnancy and of muscles during physical training programmes. However, it is thought that adults can live healthily without blood vessel growth for extended periods of time. This blood vessel growth is controlled by many factors, but VEGF is the most powerful factor.

Dr Bates, said: "Now that we have found out that this protein works in living tissues, we need to find the best way of using it in cancer, with tumour models. We also need to try it in models of other diseases where blood vessel growth is necessary, such as diabetes, age related macular degeneration and arthritis."

Dr Harper, added: "After two years of hard work it is a big step to show that this protein works in real cancers. We hope to be able to take this forward in the next few years to work out how to treat patients with cancer, eye disease and other conditions where this protein is important."

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>