Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tufts Veterinary School scientists decode Cryptosporidium genome

29.10.2004


’Nature’ article describes sequence of eight chromosomes



A team of scientists at Tufts University School of Veterinary Medicine has helped decode the genome sequence of Cryptosporidium hominis, an insidious parasite identified as one of the most common causes of waterborne diseases in humans and classified by the Centers for Disease Control and Prevention as a potential bioterrorist agent. The researchers’ findings are reported in today’s issue of the journal Nature. Cryptosporidium hominis is a highly contagious parasite that lives in the intestines of infected humans. Since there are no effective treatments, it is a relentless public health concern.

"Sequencing the genome of Cryptosporidium will help us determine the underlying mechanisms of the organism’s unusual resistance to antimicrobial agents, and enable us to develop preventive vaccines and/or pharmaceutical treatments," said Saul Tzipori, PhD, director of Tufts’ Division of Infectious Diseases and a member of the multi-institutional team researching the genome.


Present in drinking and recreational water throughout the world, Cryptosporidium causes watery diarrhea that can lead to dehydration, weight loss, stomach cramps, fever, nausea, and vomiting. While healthy people usually overcome illnesses caused by the organism, it can be life threatening to malnourished children and people whose immune systems have been compromised because of cancer, AIDS, etc.

The Cryptosporidium pathogen, which can be found in the feces of both humans and animals, is difficult to work with, thereby impeding the efforts of investigators to conduct laboratory investigations and develop appropriate therapies. Tufts researchers successfully isolated and propagated Cryptosporidium hominis in 2000, making Tufts the first research institution capable of propagating this pathogen.

In 2000, Tufts applied to the National Institutes of Health (NIH) for funding to enable a consortium of researchers at Tufts, Virginia Commonwealth University and the University of Minnesota to simultaneously sequence the genomes of two Cryptosporidium pathogens infectious to humans - Cryptosporidium hominis and Cryptosporidium parvum.

Today’s article in the journal Nature describes the consortium’s successful decoding of Cryptosporidium hominis – one of the two pathogens found in humans. In addition to producing DNA from the Cryptosporidium hominis isolate TU502, Tufts scientists constructed a bacterial artificial chromosome library for this research project. "This library is important for building a scaffold of the genome, on which the smaller sequence assemblies are aligned," said Giovanni Widmer, PhD, associate professor in Tufts’ Department of Biomedical Sciences and a lead author of this study.

In April 2004, the consortium announced in the journal Science that it had successfully sequenced the eight chromosomes found in the genome Cryptosporidium parvum, the pathogen found in ruminants and humans.

"What is unique about this project is that the genomes of two related human and veterinary pathogens were sequenced in parallel," Widmer said. "This now puts us in a position to not only identify potential drug and vaccine targets, but also unravel key biological characteristics that might help explain the difference between the pathogen that infects humans only and C. parvum, which is transmitted between humans and animals."

Barbara Donato | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>