Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trojan-Horse Therapy Blocks Buildup of Alzheimer’s Plaques

29.10.2004


A potential new therapeutic approach to Alzheimer’s disease protects brain cells in culture by drastically reducing the neurotoxic amyloid protein aggregates that are critical to the development of the disease. The treatment involves dispatching a small molecule into the cell to enlist the aid of a larger “chaperone” protein to block the accumulation of the brain-clogging protein.



The new “Trojan horse” technique overcomes a major challenge in drug design - namely, the limited ability of molecules small enough to enter a cell to interfere with interactions between much larger proteins. The researchers said it might also be possible to use this new approach to sabotage proteins central to pathogenic organisms, such as human immunodeficiency virus (HIV).

Led by Howard Hughes Medical Institute investigator Gerald R. Crabtree, the researchers reported their findings in the October 29, 2004, issue of the journal Science. First author Jason Gestwicki and senior author Isabella Graef are both members of Crabtree’s laboratory at Stanford University School of Medicine.


The plaques that clog the brains of people with Alzheimer’s disease develop through the buildup of amyloid protein chains from individual units called Aß peptide. “There have been many attempts by pharmaceutical companies to develop Aß peptide inhibitors — mainly by screening for small molecules that would bind to those aggregates and hoping that they would prevent further aggregation,” said Crabtree. “But instead, what happens in virtually all cases is that those molecules just fit right into the aggregates and don’t prevent aggregation at workable concentrations.”

The issue, he explained, applies not just to amyloid aggregation, but also to protein interactions in general. “The insurmountable problem has been that protein interactions represent the binding of two large, perfectly matched surfaces,” said Crabtree. “And small molecule drugs are only a tiny fraction of the size of those surfaces. So, even if such small molecules are constructed to bind selectively at a site between two such proteins, they either just squirt out, or the plastic surfaces of the proteins just bind around them.”

In early experiments, Roger Briesewitz, a former member of the Crabtree laboratory and HHMI fellow, who is now on the faculty at Ohio State University, had been engineering the Trojan horse approach to interfere with protein-protein interactions by designing small molecules with two binding sites. One site would bind to the protein whose interaction was to be blocked. And the other site would selectively bind to a much larger protein called a chaperone. Chaperone proteins are ubiquitous in cells and serve as “helper” molecules that guide proteins to their proper functional location in the cell.

Chaperone molecules are so plentiful in the cell that recruiting a fraction of them in such a treatment approach would not compromise their normal function, noted Crabtree.

It was Graef’s insight, said Crabtree, that the Trojan horse technique might be ideal to prevent the formation of toxic amyloid aggregates to prevent Alzheimer’s disease. “Isabella suggested that we try Aß peptide as a target because it’s small enough that a bulky chaperone protein could possibly interfere with amyloid formation from the Aß peptide,” said Crabtree.

To apply the Trojan horse approach, Gestwicki constructed a series of small “linker” molecules that would attach to a molecule called FKBP, a family of chaperone proteins found naturally at high concentrations in the cell. Gestwicki attached the other end of the linker to a molecule called Congo red, which is known to selectively bind to Aß peptide.

In test-tube studies, they found that their Trojan horse molecules did, indeed, block the growth of amyloid aggregates from their Aß peptide components. In particular, they found that the molecules inhibited growth of the shorter amyloid chains, which are believed to be more toxic to neurons. They also found that by varying the linker molecules, they could optimize the pharmaceutical properties of the Trojan horse assemblage - for example, its ability to penetrate the cell membrane to enter the cell.

In studies of the molecules’ effects on amyloid growth in cultures of neurons, the researchers confirmed that the Trojan horse molecules substantially reduced the toxicity of the amyloid by inhibiting growth of the shorter, more toxic chains of the amyloid plaque. With a second round of optimization, the scientists achieved even better results “In fact,” said Crabtree, “we achieved much better protective effects than have been achieved by pharmaceutical companies and by other academic groups using other approaches to inhibiting Aß aggregation.”

The next step will be to test the Trojan horse molecules on mouse models of Alzheimer’s disease, to determine whether the molecules have a clinical effect on progression of the disease. Crabtree said that the Trojan horse approach might complement other treatments being tested for Alzheimer’s disease. These include anti-inflammatory treatments to prevent neuronal cell death from toxic aggregates, inhibitors of aberrant molecular signaling pathways in Alzheimer’s, and vaccines to trigger antibodies to rid the brain of plaque.

Crabtree also speculated that his group’s approach could be applied widely to other clinically important protein-protein interactions, such as interfering with protein enzymes critical to replication of HIV. “HIV proteins are difficult drug targets because they can mutate rapidly to render small-molecule inhibitors inefficient,” he said. “Such drugs typically bind only to a few amino acids in the protein, which the virus can easily alter by mutation. But in our approach, we could distribute the binding over a large protein-protein interaction surface, which would be far more difficult for the virus to block by mutations affecting single amino acids.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>