Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study: Signal overload in Alzheimer brains

26.10.2004


In studies with mice that develop the equivalent of Alzheimer’s disease that runs in families, Johns Hopkins researchers have shown that brain cells’ signals confuse the movement of implanted neuronal stem cells.



The observation reinforces the idea that disease can create "microenvironments" that affect the behavior of cells. These local environments might help recruit stem cell-based therapies in other conditions, say the researchers. The findings are to be presented Oct. 25 at the annual meeting of the Society for Neuroscience by first author Zhiping Liu, Ph.D., a research associate in pathology.

"In normal adult mice, stem cells taken from the olfactory bulb returned to the olfactory bulb -- they returned to where they belong -- even though they had come from a different mouse," says Lee Martin, Ph.D., associate professor of pathology and neuroscience at Hopkins. "In mice with Alzheimer’s disease, the stem cells went all over the place within the brain, responding to a multitude of signals whose identities we don’t even know."


Remarkably, Martin says, the stem cells were attracted to the abnormal protein bundles called amyloid plaques that cause Alzheimer’s, possibly opening the door to delivering some sort of plaque-buster. Because Alzheimer’s is characterized by a relatively global loss of brain cells, rather than loss of a particular group of cells, stem cells themselves aren’t as likely to be beneficial as in diseases where the loss is focused, such as amyotrophic lateral sclerosis and Parkinson’s disease.

The olfactory bulb, the center of smell detection, houses numerous primitive stem cells that normally feed the constant, life-long regeneration of odor-detecting nerves. Because they are found in a fairly accessible region of the brain and could conceivably be removed from a person’s olfactory bulb without causing permanent damage, adult olfactory bulb stem cells are a potential non-embryonic source for cells that could prove useful in replacing nerve cells lost due to injury or diseases like ALS and Parkinson’s.

The mice in the study were actually serving as controls for a study of stem cells in mice that develop amyotrophic lateral sclerosis, to see how the stem cells behaved in other models of neurodegenerative diseases.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>