Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new oncogene may be missing link in cancer-causing chain

25.10.2004


High levels of a protein called LRP6 can make cancer cells more aggressive, according to Washington University researchers affiliated with the Siteman Cancer Center. The protein’s ability to enhance tumor development suggests that the gene that codes for LRP6 is an oncogene--a gene that contributes to tumor development when overactivated.



"Because no one has ever connected LRP6 to proliferation in tumors, we believe we may have identified a new oncogene," says Guojun Bu, Ph.D., associate professor of pediatrics and of cell biology and physiology. The findings will be reported in the December 2nd issue of the journal Oncogene. The article is available online Oct. 25. "In several types of human cancer, such as breast and colon cancer, a key cell signaling pathway that regulates cell growth and development is overactive because a gene coding for a pathway component has mutated," Bu says.

Increased signal activity from this pathway can lead to abnormal cell proliferation and ultimately to cancer, but researchers have been unable to identify the pathway component responsible for certain types of cancer such as breast cancer. "We believe LRP6 may be the missing link, the long-sought component that turns up the activity of this signaling pathway," Bu says.


To uncover LRP6’s role in cancer, Bu’s team took slow-growing cancer cells and altered the LRP6 gene so that it made more of the protein. They found that the cancer cells began proliferating more rapidly as a result. When the researchers introduced these aggressive cells into mice, the animals developed tumors twice as large as those caused by the original, slow-growing cancer cells.

Having seen the effect of high-levels of LRP6 in laboratory experiments, Bu and his team looked for higher-than-normal LRP6 gene activity in human tumor samples. "We used patient-matched tumor specimens from the Siteman Cancer Center," Bu says. "We found both colon and breast cancer samples with increased LRP6 gene activity." "The most interesting was breast cancer," he says. "We found the LRP6 gene had higher than normal activity in five of the eight breast tumors we tested. So, it appears that an increase of LRP6 alone may lead to breast cancer in these cases."

Next Bu and his colleagues plan to screen a larger group of breast cancer samples to see how frequently the LRP6 gene is overactivated in tumor tissue. Because LRP6 is an essential component of a key signaling pathway and located in an exposed position on the surface of cells, Bu believes the protein may be a good target for drugs that decrease its function to slow down or prevent the progression of some types of cancer.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>