Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To save dolphin’s dorsal fin experts combine medical technology and teamwork

20.10.2004


Dolphin Quest enlists University of Pittsburgh specialist to develop custom ’scaffold’ for tissue’s repair; ’Liko is one lucky dolphin’


Dolphin Quest training director George Biedenbach with Liko


Liko in his sling soon after his surgery and application of extracellular matrix treatment in July.



An expert team of marine mammal veterinarians, medical researchers, cosmetic surgeons and dolphin trainers recently joined forces to apply the latest advances in human regenerative medicine in an attempt to restore a bottlenose dolphin’s damaged dorsal fin.

The procedure on Liko, a three-year-old male dolphin at Dolphin Quest on Hawaii’s Big Island, took place on July 30 and marked the first-ever marine mammal application of extracellular matrix tissue repair. Liko (pronounced Lee-ko) continues to undergo pioneering veterinary light emitting diode (LED ) therapy to stimulate tissue growth and regeneration in his injured fin.


Liko sustained a tear at the base of his dorsal (top) fin, likely in a game of "chase" with his dolphin cohorts. While wild dolphins have been observed with similar and more severe lacerations that can result in eventual loss of the dorsal fin, Dolphin Quest veterinarians organized the ground-breaking procedure in an effort to keep as much of Liko’s dorsal fin intact as possible. A dolphin’s dorsal fin consists of soft, cartilage-like tissue.

"Liko’s story is a story of medicine with a big heart," said Rae Stone, D.V.M., a Dolphin Quest veterinarian and co-owner. "It shows extraordinary voluntary cooperation across several human medical and veterinary disciplines that has involved numerous experts with cutting-edge technology and specialized experience. Liko is one very lucky young dolphin."

"Liko’s progress has been fantastic and he’s well on his way to healing completely," said Stephen Badylak, D.V.M., M.D., Ph.D., the University of Pittsburgh tissue engineering expert enlisted by Dolphin Quest. "The things we’ve learned working together to save Liko’s dorsal fin will help other dolphins in the future and many, many other animals of all kind, as Liko’s story helps introduce the concept of regenerative medicine to the veterinary field."

The use of extracellular matrix for the repair of soft tissues was developed by Dr. Badylak, research professor in the department of surgery at the University of Pittsburgh School of Medicine and director of the Center for Pre-Clinical Tissue Engineering at the University of Pittsburgh’s McGowan Institute for Regenerative Medicine. Once in place, the matrix, a 3-dimensional scaffold void of cells but with structural and functional proteins still intact, serves to recruit the appropriate cells for tissue remodeling without producing scarring.

The extracellular matrix used in Liko’s procedure was derived from pig urinary bladder and provided by ACellTM Inc., which Dr. Badylak and his team at the University of Pittsburgh custom-designed for Liko in consultation with veterinarians Dr. Stone and Jay Sweeney, V.M.D., Dolphin Quest co-presidents.

A major challenge the team faced was keeping the application in place on the active dolphin in a saltwater lagoon environment for the time it was expected to take for the soft tissue to sufficiently regenerate. The medical team employed a specially designed sling custom-made by Otter Bay Wetsuits to protect the extracellular matrix patch.

Drs. Stone and Sweeney lead the team that performed the procedure, which included Dolphin Quest veterinarian Gregg Levine, D.V.M.; cosmetic surgeon Paul Faringer, M.D., of Kona, Hawaii; veterinary technician Abby Simmons-Byrd, research and development manager for ACell, Inc.; Melyni Worth, Ph.D., of Thor Laser & LED Therapy; and George Biedenbach, director of animal management at Dolphin Quest Hawaii.

Liko’s LED therapy treatments began in September with equipment donated by Dr. Worth. LED wavelengths are longer than laser light and penetrate deeper to increase energy metabolism at the cellular level. Though LED light is three times brighter than the sun, the medical treatment wands are cool to the touch, highly portable and do not damage the skin of dolphins or humans.

Thermal imagery revealed patterns of increased vascular development in Liko’s dorsal fin and more rapid healing following application of localized LED therapy. Human cosmetic surgeon Dr. Faringer performed the initial procedure in July that prepped Liko’s wound for the sequence of fin-saving treatments to follow.

But all agree the most important member of the dolphin’s expert medical team is Liko, himself. The young dolphin’s calm comportment in human care allowed the initial surgery and weeks of groundbreaking intensive regenerative therapies without anesthesia or administration of sedatives.

"An important part of our animal care and training is building a relationship of mutual trust and conditioning our dolphins to being touched and treated by their veterinarians and trainers," said Mr. Biedenbach, Liko’s training director at Dolphin Quest Hawaii. "Liko’s cooperation makes him a key member of his own medical team and has gone a long way to improve his chances of a successful recovery."

"When we first put Liko’s medical team and treatment plan together, we were outwardly hopeful, but harbored some serious doubts that we would be able to save this dolphin’s dorsal fin," said Dr. Stone. "But Liko surprised us all. Today we’re optimistic that his fin will eventually be fully reattached and strong enough to stand up to the rigors of a robust male dolphin lifestyle."

Liko’s dorsal fin continues its remarkable healing as the young dolphin continues to participate in his pioneering regenerative therapies in a quiet lagoon alongside the Hilton Waikoloa Village Resort. Veterinarians are excited by his progress, but caution that Liko still has a ways to go on the road to recovery.

Lisa Rossi | EurekAlert!
Further information:
http://www.dolphinquest.org
http://www.upmc.edu

More articles from Life Sciences:

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

nachricht SERSitive: New substrates make it possible to routinely detect one molecule in a million
10.08.2018 | Institute of Physical Chemistry of the Polish Academy of Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>