Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Brain Cell Transplants To Correct Muscle Spasms After Aneurysm Surgery

19.10.2004


Transplantation of human brain cells corrected involuntary muscle spasms in rats with ischemic spinal cord injury, according to research published online October 12 and in print October 19, 2004 in the European Journal of Neurosciences by investigators at the University of California, San Diego (UCSD) School of Medicine.



Ischemic spinal cord injury, caused by reduced blood flow to the spinal cord, occurs in 20 to 40 percent of the several hundred patients each year in the U.S. who undergo surgery to repair an aneurysm, or sac-like widening of the aorta, the main artery that leaves the heart. A subpopulation of patients with ischemic spinal cord injury develop a prominent muscle spasticity, or jerkiness of the legs and lower body, due to the irreversible loss of specialized spinal cord cells that control local motor function.

During a 12-week period in which the animals were followed, the UCSD team found that rats receiving the brain, or neuronal cell transplants displayed a progressive recovery of motor function and a decrease in spasticity in the lower extremities over a period of several weeks following the injections. Fifty percent of the animals experienced a significant improvement in motor function. In contrast, the “control” rats that did not receive transplants exhibited no improvement in motor function or spasticity. A post-mortem study of the animals showed a robust growth of neurons and an increase in neurotransmitters in the spinal cords of rats that received the transplanted neuronal cells.


“These findings provide conclusive evidence that transplantation of well defined human neuronal cells into a specific region of the spinal cord can be an effective treatment for spasticity in cases of ischemic spinal cord injury,” said the study’s lead author, Martin Marsala, M.D., UCSD associate professor of anesthesiology. “While we believe the transplantation may relieve spasticity in victims of traumatic spinal cord injury, as well, it won’t help those patients recover voluntary movement,” he added.

Current treatment for debilitating muscle spasticity is continuous systemic or spinal drug treatments using implanted pumps. These approaches display limited efficacy with accompanying side effects and eventual drug tolerance.

The ischemic spinal cord injury that occurs during surgery is usually due to clamping of the blood flow to the spinal cord, to permit repairs of the aorta, Marsala said. The loss of specialized spinal cord neurons called spinal inhibitory neurons is irreversible and the resulting spasticity often worsens over time as more neurons are lost.

In addition to Marsala, authors of the paper included Tony Yaksh, Ph.D. and Osamu Kakinohana, Ph.D., UCSD Department of Anesthesiology; and Zoltan Tomori and Dasa Cizkova, Slovak Academy of Sciences, Slovakia. The study was funded by the National Institutes of Health.

Sue Pondrom | EurekAlert!
Further information:
http://www.health.ucsd.edu
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>