Antibiotic identified as potential anti-cancer candidate

Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics


A molecular mechanism that was formerly thought to be important only in bacteria has now been shown to be a potential target for an anticancer therapy based on antibiotic use. David Scheinberg and colleagues, at the Sloan-Kettering Institute, have been investigating an enzyme in humans that is similar to one in bacteria called peptide deformylase (Pdf) and have found that an antibiotic called actinonin, which inhibits the human Pdf, also inhibits tumor growth. Pdf was thought to be important only to bacteria and the bacterially-related organelles of cells of higher organisms.

Pdf is an enzyme that, during protein production, removes a modification called an N-formyl group from the first amino acid, a methionine, in the protein chain. While work began on the development of antibiotics against what was thought to be a bacterial-exclusive enzyme, genome-based data searches identified several classes of Pdf-like sequences in parasites, plants and mammals. Subsequent studies showed that the Pdfs were active both in culture and in the living organism, thus potentially derailing the usefulness of these antibiotics for specifically combating infectious agents. In previous studies, Scheinberg and colleagues had found that actinonin had an antiproliferative effect on human cancer cell lines and on tumor growth in a mouse model. They theorized this growth inhibitory activity might be related to actinonin’s inhibition of human Pdf.

The researchers now provide the evidence to support this theory. They show that human Pdf is active in the mitochondria and is essential for cellular growth and proliferation. They have designed and created a class of new actinonin-based Pdf inhibitors, and have demonstrated that they selectively inhibit growth in several human tumor cell lines. They further demonstrate that human tumor growth in mice can be suppressed by these Pdf inhibitors and suggest a mechanism of actinonin action. Taken together, these data have significant implications for the understanding and development of various Pdf-based therapeutic strategies for bacteria, mycobacteria, parasites, or cancer.

Media Contact

Laurie Goodman EurekAlert!

More Information:

http://www.the-jci.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors