Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel a central mystery of how hearing happens

14.10.2004


Scientists at the University of Virginia Health System have helped solve the mystery of how the human ear converts sound vibrations and balance stimuli into electrical impulses the brain can interpret. Their research is detailed in the October 13 advance online edition of the journal Nature, found at www.nature.com/nature .

Neuroscience researchers Jeffrey Holt and Gwenaëlle Géléoc, working in collaboration with scientists elsewhere, discovered a long-sought protein called TRPA1 that is located at the tips of the tiny sensory cells in the inner ear. They found that TRPA1 converts sound into nerve impulses, which are transmitted to the brain. Identification of the protein and the gene that encodes TRPA1, could allow for future treatments for deafness. "This is one of the most significant findings in sensory biology, detailing an ingeniously simple, but remarkably sensitive system," said Holt, an assistant professor of neuroscience and otolaryngology at the U.Va. Health System.

"For hearing researchers, this discovery is the holy grail in understanding the function of both hearing and balance," said Jeffrey Corwin, professor of neuroscience at U.Va. The protein TRPA1 works by forming a channel resembling a donut in the cell membrane of inner ear hair cells. "In the absence of sound, the hole is closed, "Holt explained. "But when sound strikes the protein, the hole pops open like a trap door, allowing potassium and calcium ions to flood into the cells. Because these elements carry a positive charge, an electrical signal is generated which is relayed to the brain for interpretation."



Now that this genetic link to hearing has been established, Holt said, geneticists can examine the gene that encodes TRPA1 in deaf patients, some of whom he expects may have a mutated form of the TRPA1 gene. "This could allow for the development of new gene therapies for deafness and balance disorders in the next five to ten years," Holt said. "Essentially, if we could take a correct copy of the gene and reintroduce it into the cells of the inner ear, we might be able to restore hearing and balance function in people with hereditary inner ear disorders."

A large body of circumstantial evidence has accumulated over the past 25 years that suggests a mechanically sensitive, donut-shaped protein must be at the heart of the body’s hearing apparatus, but scientists had no idea of what it was, despite intense effort. Holt and Géléoc previously identified an 18-hour window for the functional development of inner ear hair cells in mouse embryos. This breakthrough helped them identify that the TRPA1 gene was turned on during the same 18-hour period, sending the U.Va. scientists down the path to discovery.

"Now that we’ve identified TRPA1 as the hair cell transduction channel," Géléoc said, "this opens a window of opportunity with significant implications for the field of hearing and deafness research and beyond, including the fields of engineering and nanotechnology."

The husband and wife team of Holt and Géléoc, an assistant professor of research in neuroscience and otolaryngology at U.Va., worked in collaboration with scientists at Northwestern University, Duke University, Harvard Medical School and the National Institutes of Health. "This represents science at its best," Holt said. "We approached this question from a number of angles, with a number of different techniques and in a number of different research labs. The fact that we collaborated and came up with the same answer independently allows us to make a much more convincing scientific argument than any one scientist or lab could have done on their own."

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu
http://www.nature.com/nature

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>