Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel a central mystery of how hearing happens

14.10.2004


Scientists at the University of Virginia Health System have helped solve the mystery of how the human ear converts sound vibrations and balance stimuli into electrical impulses the brain can interpret. Their research is detailed in the October 13 advance online edition of the journal Nature, found at www.nature.com/nature .

Neuroscience researchers Jeffrey Holt and Gwenaëlle Géléoc, working in collaboration with scientists elsewhere, discovered a long-sought protein called TRPA1 that is located at the tips of the tiny sensory cells in the inner ear. They found that TRPA1 converts sound into nerve impulses, which are transmitted to the brain. Identification of the protein and the gene that encodes TRPA1, could allow for future treatments for deafness. "This is one of the most significant findings in sensory biology, detailing an ingeniously simple, but remarkably sensitive system," said Holt, an assistant professor of neuroscience and otolaryngology at the U.Va. Health System.

"For hearing researchers, this discovery is the holy grail in understanding the function of both hearing and balance," said Jeffrey Corwin, professor of neuroscience at U.Va. The protein TRPA1 works by forming a channel resembling a donut in the cell membrane of inner ear hair cells. "In the absence of sound, the hole is closed, "Holt explained. "But when sound strikes the protein, the hole pops open like a trap door, allowing potassium and calcium ions to flood into the cells. Because these elements carry a positive charge, an electrical signal is generated which is relayed to the brain for interpretation."



Now that this genetic link to hearing has been established, Holt said, geneticists can examine the gene that encodes TRPA1 in deaf patients, some of whom he expects may have a mutated form of the TRPA1 gene. "This could allow for the development of new gene therapies for deafness and balance disorders in the next five to ten years," Holt said. "Essentially, if we could take a correct copy of the gene and reintroduce it into the cells of the inner ear, we might be able to restore hearing and balance function in people with hereditary inner ear disorders."

A large body of circumstantial evidence has accumulated over the past 25 years that suggests a mechanically sensitive, donut-shaped protein must be at the heart of the body’s hearing apparatus, but scientists had no idea of what it was, despite intense effort. Holt and Géléoc previously identified an 18-hour window for the functional development of inner ear hair cells in mouse embryos. This breakthrough helped them identify that the TRPA1 gene was turned on during the same 18-hour period, sending the U.Va. scientists down the path to discovery.

"Now that we’ve identified TRPA1 as the hair cell transduction channel," Géléoc said, "this opens a window of opportunity with significant implications for the field of hearing and deafness research and beyond, including the fields of engineering and nanotechnology."

The husband and wife team of Holt and Géléoc, an assistant professor of research in neuroscience and otolaryngology at U.Va., worked in collaboration with scientists at Northwestern University, Duke University, Harvard Medical School and the National Institutes of Health. "This represents science at its best," Holt said. "We approached this question from a number of angles, with a number of different techniques and in a number of different research labs. The fact that we collaborated and came up with the same answer independently allows us to make a much more convincing scientific argument than any one scientist or lab could have done on their own."

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu
http://www.nature.com/nature

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>