Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers-led research offers new clues in the genetic mysteries of maize

12.10.2004


Milestone in maize genomics



Rutgers researchers, with the support of the National Science Foundation, have pushed back the frontiers on the genetic nature and history one of the world’s most important crops – corn. This crop dominates agriculture in the United States, where approximately 9 billion bushels are produced annually at a value of $30 billion. Maize (or corn) is also an important dietary staple in much of the third world. Rutgers’ Joachim Messing and his colleagues announced this month discoveries about the inner workings of corn, its origins and evolution, with implications for breeding, genetic engineering and future genomic studies.

"This latest research, conducted with worldwide collaborations, led us to a new understanding of maize that will help enable scientists and farmers to make major improvements in one of the world’s most significant crops and gain new and important insights in plant genomic studies," said Messing, director of the Waksman Institute of Microbiology at Rutgers, The State University of New Jersey. The findings are presented in three papers in the journal Genome Research and one in the Proceedings of the National Academy of Sciences.


The scientists conducted the most comprehensive survey of the maize genome ever performed and established for the first time the genome’s magnitude – approximately 59,000 genes – and the relative position of the genes. This is twice as many as the human genome and the highest number of genes of any genome sequenced to date. Messing emphasized that this survey is only a first step and conducting a whole genome sequence is a priority dictated by nutritional, economic and societal needs.

The research further established that in addition to its immense size, the corn genome is extremely complex due, in part, to positional instability as well as its genetic history. Messing and his colleagues concluded that maize genes are scrambled, having moved around to different locations throughout the genome – an occurrence unheard of in other species, including the human genome. This has important implications for genetic engineering.

"An argument often cited against the introduction of external genes, a common practice in genetic engineering, suggests that it would create an unnatural instability in the genome," said Messing. "With all the maize genes moving around by themselves in nature, perhaps conveying some selective advantage in doing so, this argument is unfounded."

Through sophisticated computational analysis, the researchers concluded that today’s corn is the product of two very closely related ancestral species that no longer exist. About 5 million years ago the species crossed and, in doing so, doubled the number of genes. Through mechanisms not yet revealed, many of these genes were shed and then others duplicated through gene amplification as this process is termed.

When compared to closely related species today, the researchers found that as much as 22 percent of the maize genes could be identified as being different. This was surprising, considering that other close relatives – such as chimpanzees and humans – differ in less than one percent of their genes.

"It looks like significant evolutionary change happened in a relatively short time," said Messing. "Because they are immobile, plants have to adapt to changes more rapidly than animals that can move to escape environmental impacts. Plants are continually faced with a variety of seasonal challenges and assaults by a series of different pests which may well lead to evolution on a fast track."

While the findings offered in the four newly published papers provide exciting, new glimpses into the nature of maize, Messing stressed the need for the completion of a whole genome sequence, a more detailed analysis of gene expression in maize, and a better understanding of its genetic and cellular mechanisms.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>