Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells in retina found to behave like soap bubbles

12.10.2004


Soap bubbles delight children and the young at heart, but they also have been objects of scientific study for centuries. Operating under the laws of physics, bubbles always try to minimize their surface area, even when many bubbles are aggregated together.



Now two Northwestern University scientists have demonstrated that the tendency to minimize surface area is not limited to soap bubbles but extends to living things as well. In a paper published Oct. 7 in the journal Nature, they show that cells within the retina take on shapes and pack together like soap bubbles, ultimately forming a pattern that is repeated again and again across the eye. Gaining insight into these patterns can help researchers understand the interplay between genetics and physics in cell formation.

"The cells we studied, those found in the retina of the fruit fly, adopt mathematically predictable shapes and configurations," said Richard W. Carthew, professor of biochemistry, molecular biology and cell biology and a co-author on the paper. "Like bubbles, life has co-opted a physical tendency for surfaces to be minimized and has harnessed it to design intricate cellular patterns within complex structures such as the eye."


Similar to the colored dots in a Georges Seurat painting, though on a three-dimensional scale, the cell is the indivisible unit that gives shape to something larger and recognizable -- a butterfly, a maple tree, a human being. How is this amazing diversity of species created?

"It is like designing the pieces of a jigsaw puzzle so that they fit together seamlessly," said Carthew. "Understanding how cells fit together in space is an underappreciated area of science that has started to gain serious momentum in the last decade. Cells are different shapes and pack together in different ways depending on where they are located in a living thing and what their function is."

In investigating the physical basis of biological patterning in the retina, Carthew and co-author Takashi Hayashi, a post-doctoral fellow at Northwestern, looked at normal retinal cells where four cells group together to form an aperture that is circular in shape. They found that they did so in exactly the same pattern as a group of four soap bubbles. Then, they varied the number of cells in each aperture and looked at how the cells fit together. Again, the cell configurations correlated perfectly to those of bubbles of the same number. When an aperture had one to five cells each resulted in one configuration. If an aperture had six cells, three different configurations were possible, but always the same three.

"By looking at one exquisitely structured tissue in one species, we discovered how the cells order themselves," said Carthew, who with Hayashi has been studying the form and function of the retina for years. "This experiment illustrates the importance of mathematics and physics in biology and points to a general principle of patterning found in a wide range of living things."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>