Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switch of a gene turns cancer cells healthy in mice

11.10.2004


Conventional wisdom holds that cancer cells contain so many mutations that there’s no way to return them to the straight and narrow path of their normal neighbors. This has led to cancer treatments that focus on destroying or removing the cancerous cells.



But new research by Dean Felsher, MD, PhD, assistant professor of medicine (oncology) and of pathology at the Stanford University School of Medicine, suggests that cancer cells can be reformed. His work, published in the Oct. 10 advance online issue of Nature, could lead to new ways of treating the most common forms of cancer. Felsher found that turning off just one cancer-causing gene is enough to eliminate aggressive, incurable liver tumors in mice in just four weeks. These cells still had the mutations that made them cancerous in the first place, except that one. He had documented a similar phenomenon in bone cancer two years ago, but liver cancer is more common and difficult to cure. "This is a terrible cancer," said Felsher. "Anything that is encouraging in liver cancer may be important."

Liver cancer is formed in a type of cells called epithelial cells - the same ones that form cancers in the breast, colon and prostate. Felsher’s findings about liver cancer could also apply to these types of cancer. Felsher hopes his work pushes people to find drugs that specifically hamstring the protein in question: Myc (pronounced "mick"), which is one of the most commonly mutated oncogenes in cancer cells.


Myc protein acts as a cellular conductor, orchestrating messages that tell a cell to divide. Normal cells only make the protein when it’s time to multiply. Cancer cells produce too much of this protein all the time, constantly prodding themselves to divide.

In his work, Felsher studied mice whose liver cells he had altered to carry a modified Myc gene. Unlike the normal gene, this one is constantly on. This means that it churned out the Myc protein - until Felsher turned it off. And turning it off is as simple as feeding mice the antibiotic doxycycline.

The mice remained cancer-free as long as they maintained their diet of the antibiotic. But as soon as Felsher withheld the doxycycline, the gene was back on; Myc protein accumulated in the liver cells, and the animals developed aggressive liver cancer within an average of 12 weeks.

Returning these cancer-laden mice to the doxycycline diet again turned off the production of Myc protein and eliminated the cancer. After doing that, Felsher saw normal-appearing liver cells - a finding that was confirmed by his collaborators, Boris Ruebner, Alexanxer Borowski and Robert Cardiff at University of California-Davis.

Together, the researchers found that turning the Myc gene on and off acted like a tap, releasing the cancerous cells to divide uncontrollably then shutting off their cancerous progression. "The exciting thing is that you can turn cancer cells into something that appears to be normal," Felsher said.

Still, some of these those normal-looking cells were simply dormant and retained the ability to become cancerous. This finding could explain why cancers recur after chemotherapy. If the treatment only turns the cancer cells dormant, they can easily become cancerous again at a later time.

One concern Felsher and his colleagues had is whether the liver cells were truly going in and out of a cancerous state, or if new cancers formed each time they reactivated the Myc gene. To settle this question they needed a way to watch the cancerous cells to see whether they regressed to a normal state or died when Myc was turned off.

The solution came through a collaboration with Christopher Contag, PhD, assistant professor of pediatrics, radiology and microbiology and immunology at the Stanford medical school. Felsher and his group created liver tumor cells containing a green cellular beacon that can be detected by a super-sensitive camera developed by Contag and his colleagues. When these marked cells were injected into mice, they quickly formed liver cancers. Feeding the mice doxycyclin again turned off Myc and eliminated the cancer.

But this time around, the researchers could easily detect the cells because of their green label. Aside from their color, they looked like normal liver cells and produced liver proteins. These cells were proof that turning off the Myc gene alters the cell’s fate rather than killing it outright.

The hurdle now is finding drugs that deactivate the Myc gene in humans. Felsher’s experiments worked because the group could create a modified Myc gene that responds to doxycycline. To work that same trick in human cancers, researchers need a drug that binds to the Myc protein and renders it useless.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

Ultra ultrasound to transform new tech

17.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>