Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switch of a gene turns cancer cells healthy in mice

11.10.2004


Conventional wisdom holds that cancer cells contain so many mutations that there’s no way to return them to the straight and narrow path of their normal neighbors. This has led to cancer treatments that focus on destroying or removing the cancerous cells.



But new research by Dean Felsher, MD, PhD, assistant professor of medicine (oncology) and of pathology at the Stanford University School of Medicine, suggests that cancer cells can be reformed. His work, published in the Oct. 10 advance online issue of Nature, could lead to new ways of treating the most common forms of cancer. Felsher found that turning off just one cancer-causing gene is enough to eliminate aggressive, incurable liver tumors in mice in just four weeks. These cells still had the mutations that made them cancerous in the first place, except that one. He had documented a similar phenomenon in bone cancer two years ago, but liver cancer is more common and difficult to cure. "This is a terrible cancer," said Felsher. "Anything that is encouraging in liver cancer may be important."

Liver cancer is formed in a type of cells called epithelial cells - the same ones that form cancers in the breast, colon and prostate. Felsher’s findings about liver cancer could also apply to these types of cancer. Felsher hopes his work pushes people to find drugs that specifically hamstring the protein in question: Myc (pronounced "mick"), which is one of the most commonly mutated oncogenes in cancer cells.


Myc protein acts as a cellular conductor, orchestrating messages that tell a cell to divide. Normal cells only make the protein when it’s time to multiply. Cancer cells produce too much of this protein all the time, constantly prodding themselves to divide.

In his work, Felsher studied mice whose liver cells he had altered to carry a modified Myc gene. Unlike the normal gene, this one is constantly on. This means that it churned out the Myc protein - until Felsher turned it off. And turning it off is as simple as feeding mice the antibiotic doxycycline.

The mice remained cancer-free as long as they maintained their diet of the antibiotic. But as soon as Felsher withheld the doxycycline, the gene was back on; Myc protein accumulated in the liver cells, and the animals developed aggressive liver cancer within an average of 12 weeks.

Returning these cancer-laden mice to the doxycycline diet again turned off the production of Myc protein and eliminated the cancer. After doing that, Felsher saw normal-appearing liver cells - a finding that was confirmed by his collaborators, Boris Ruebner, Alexanxer Borowski and Robert Cardiff at University of California-Davis.

Together, the researchers found that turning the Myc gene on and off acted like a tap, releasing the cancerous cells to divide uncontrollably then shutting off their cancerous progression. "The exciting thing is that you can turn cancer cells into something that appears to be normal," Felsher said.

Still, some of these those normal-looking cells were simply dormant and retained the ability to become cancerous. This finding could explain why cancers recur after chemotherapy. If the treatment only turns the cancer cells dormant, they can easily become cancerous again at a later time.

One concern Felsher and his colleagues had is whether the liver cells were truly going in and out of a cancerous state, or if new cancers formed each time they reactivated the Myc gene. To settle this question they needed a way to watch the cancerous cells to see whether they regressed to a normal state or died when Myc was turned off.

The solution came through a collaboration with Christopher Contag, PhD, assistant professor of pediatrics, radiology and microbiology and immunology at the Stanford medical school. Felsher and his group created liver tumor cells containing a green cellular beacon that can be detected by a super-sensitive camera developed by Contag and his colleagues. When these marked cells were injected into mice, they quickly formed liver cancers. Feeding the mice doxycyclin again turned off Myc and eliminated the cancer.

But this time around, the researchers could easily detect the cells because of their green label. Aside from their color, they looked like normal liver cells and produced liver proteins. These cells were proof that turning off the Myc gene alters the cell’s fate rather than killing it outright.

The hurdle now is finding drugs that deactivate the Myc gene in humans. Felsher’s experiments worked because the group could create a modified Myc gene that responds to doxycycline. To work that same trick in human cancers, researchers need a drug that binds to the Myc protein and renders it useless.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>