Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Researchers Identify Key Plant Enzyme That Defends Against Multiple Infections

08.10.2004


Scientists from the University of California, Riverside have identified one of the key enzymes that trigger programmed cell death, an important process plants undergo in fighting off bacterial, fungal or viral infections. The development holds out hope of improving crop yields, which are dependent on plants being able to fend off multiple types of pathogens.



The findings, outlined in a paper titled “VPEg Exhibits a Caspase-like Activity that Contributes to Defense Against Pathogens” were reported in the Sept. 23, online issue of Current Biology, and involve research on the key plant protein, vacuolar processing enzyme or VPEg, in Arabidopsis thaliana, or thale cress, that is required for this process.

Programmed cell death (PCD), which occurs naturally in all multi-cellular organisms, is the regulated elimination of cells that happens during the course of development, as well as in response to bacterial, fungal and viral infection. Caspases are a family of proteases, or enzymes that degrade proteins, which play an essential role in initiating and carrying out programmed cell death in animals.


Caspase-like activities have also been shown to be required for the initiation of programmed cell death in plants, but the genes controlling those activities have not been identified.

Natasha Raikhel, Director of the UCR Center for Plant Cell Biology, and her former postdoctoral researcher, Enrique Rojo, have now shown that this key plant protein contributes to defense against bacterial, fungal and viral pathogens in plants by activating programmed cell death pathways.

They have discovered that mutants lacking this protein have an increased susceptibility to these pathogens. These results have significant influence in the outcome of a diverse set of plant-pathogen interactions and suggest that this key plant protein is likely involved in a variety of processes that range from stress and defense responses to proper development during aging.

This is an important discovery because it demonstrates a previously unknown mechanism through which plants control cell death. “Programmed cell death is a universal process that all multicellular organisms must control throughout growth and development,” explained Raikhel. “Since PCD plays such a central role in a wide variety of physiological processes, the VPE pathway for controlling PCD likely has a huge impact on this process in plants.”

The research, funded by the National Science Foundation, was carried out from 2002-2004 in the Department of Botany and Plant Sciences and the Center for Plant Cell Biology (CEPCEB) at UC Riverside and the Universidad Autónoma de Madrid.

Besides Raikhel and Rojo, UCR co-authors of the Current Biology paper include Clay Carter, Jan Zouhar, Songqin Pan, and Hailing Jin. Co-authors from other institutions include Raquel Martin, Manuel Paneque and Jose Juan Sanchez-Serrano of the Departamento de Genética Molecular de Plantas del Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain; Frederick M Ausubel and Julia Plotnikova of the Department of Genetics at Harvard Medical School and the Department of Molecular Biology at Massachusetts General Hospital, Boston; and Barbara Baker of the Plant Gene Expression Center at UC Berkeley & the U.S. Department of Agriculture.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>