Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model Shows Calcium Control Is Key for Synapse Homeostasis

08.10.2004


When memories are made and learning occurs, the connections between brain cells change. Scientists know that an influx of calcium is critical to this process. A theoretical model developed by a Brown University research team shows that cells’ ability to fine-tune this calcium flow not only sparks changes in synapses but also allows cells to maintain a working state of equilibrium.



A research team based at Brown University has created a theoretical model that may shed light on a brain science mystery: What happens to cells when humans learn and remember?

Luk Chong Yeung, a neuroscience research associate, and her colleagues have come up with a concept that hinges on calcium control. Certain receptors, which act like gates, allow calcium to rush into brain cells that receive memory-making information. Once inside these cells, calcium sets off chemical reactions that change the connections between neurons, or synapses. That malleability, known as synaptic plasticity, is believed to be the fundamental basis of memory, learning and brain development.


The Brown team showed that the control of these receptors not only makes synapses stronger or weaker, but also stabilizes them - without interfering with the richness of the cellular response to signals sent from neighboring cells. Their model appears in the current online early edition of the Proceedings of the National Academy of Sciences. "The beauty of the brain is that it is plastic and robust at the same time," Luk Chong said. "If the model is verified experimentally, we’ve solved an important piece of the puzzle of how these seemingly antagonistic properties can and, in fact must, coexist in the cell." When Luk Chong helped create the model, she was a Brown graduate student pursing her doctoral degree in physics and working at the Institute for Brain and Neural Systems, a research laboratory run by Nobel Prize-winning physicist Leon Cooper.

Two years ago, institute scientists developed a model where N-methyl-D-aspartate receptors control the flow of calcium into signal-receiving neurons. They showed that the model unified several observations of synaptic plasticity and, after being tested in labs, it is seen as the standard model by many researchers in the field. But the model had a flaw. Although it explained how synapses get stronger or weaker, it didn’t account for how synapses stabilize. Without homeostasis, synapses could grow indefinitely - an impossible scenario. So Luk Chong and her colleagues began working on a new version.

They based their model on experimental data as well as mathematical equations. Then Luk Chong applied the model to a simulated brain cell receiving signals from competing synapses. She found that the theory held up: Regulating the flow of calcium into cells allows not only for rapid synaptic changes that capture the transient features of the signal, but also slows homeostatic control that returns the cell to a steady state. "The key feature of the model is that, unlike many neural learning theories, it is built on real quantities that can be measured in the lab," Luk Chong said. "But the basic principles are universal enough to be applied to any stable plasticity model."

The research team included Cooper, a professor of physics and neuroscience at Brown; Harel Shouval, an assistant professor of neurobiology and anatomy at the University of Texas Medical School at Houston; and Brian Blais, a professor of physics at Bryant College.

The Burroughs Wellcome Fund and the Galkin Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>